scholarly journals Best practices for time-resolved serial synchrotron crystallography

Author(s):  
Eike C. Schulz ◽  
Briony A. Yorke ◽  
Arwen R. Pearson ◽  
Pedram Mehrabi

With recent developments in X-ray sources, instrumentation and data-analysis tools, time-resolved crystallographic experiments, which were originally the preserve of a few expert groups, are becoming simpler and can be carried out at more radiation sources, and are thus increasingly accessible to a growing user base. However, these experiments are just that: discrete experiments, not just `data collections'. As such, careful planning and consideration of potential pitfalls is required to enable a successful experiment. Here, some of the key factors that should be considered during the planning and execution of a time-resolved structural study are outlined, with a particular focus on synchrotron-based experiments.

Author(s):  
Bruna F. Baggio ◽  
Yvonne Grunder

This article reviews progress in the study of materials using X-ray-based techniques from an electrochemistry perspective. We focus on in situ/in operando surface X-ray scattering, X-ray absorption spectroscopy, and the combination of both methods. The background of these techniques together with key concepts is introduced. Key examples of in situ and in operando investigation of liquid–solid and liquid–liquid interfaces are presented. X-ray scattering and spectroscopy have helped to develop an understanding of the underlying atomic and molecular processes associated with electrocatalysis, electrodeposition, and battery materials. We highlight recent developments, including resonant surface diffraction and time-resolved studies. Expected final online publication date for the Annual Review of Analytical Chemistry, Volume 14 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Majed Chergui

The need to visualize molecular structure in the course of a chemical reaction, a phase transformation or a biological function has been a dream of scientists for decades. The development of time-resolved X-ray and electron-based methods is making this true. X-ray absorption spectroscopy is ideal for the study of structural dynamics in liquids, because it can be implemented in amorphous media. Furthermore, it is chemically selective. Using X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in laser pump/X-ray probe experiments allows the retrieval of the local geometric structure of the system under study, but also the underlying photoinduced electronic structure changes that drive the structural dynamics. Recent developments in picosecond and femtosecond X-ray absorption spectroscopy applied to molecular systems in solution are reviewed: examples on ultrafast photoinduced processes such as intramolecular electron transfer, low-to-high spin change, and bond formation are presented.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
A. Aquila ◽  
M. Drescher ◽  
T. Laarmann ◽  
M. Barthelmeß ◽  
H. N. Chapman ◽  
...  

The femtosecond nature of X-ray free electron laser (FEL) pulses opens up exciting research possibilities in time-resolved studies including femtosecond photoemission and diffraction. The recent developments of seeding X-ray FELs extend their capabilities by creating stable, temporally coherent, and repeatable pulses. This in turn opens the possibility of spectral engineering soft X-ray pulses to use as a probe for the control of quantum dynamics. We propose a method for extending coherent control pulse-shaping techniques to the soft X-ray spectral range by using a reflective geometry 4f pulse shaper. This method is based on recent developments in asymmetrically cut multilayer optic technology and piezoelectric substrates.


2017 ◽  
Vol 100 (1) ◽  
pp. 25-44 ◽  
Author(s):  
Terence J. Kemp ◽  
Nathaniel W. Alcock

The developments in crystallography, since it was first covered in Science Progress in 1917, following the formulation of the Bragg equation, are described. The advances in instrumentation and data analysis, coupled with the application of computational methods to data analysis, have enabled the solution of molecular structures from the simplest binary systems to the most complex of biological structures. These developments are shown to have had major impacts in the development of chemical bonding theory and in offering an increasing understanding of enzyme–substrate interactions. The advent of synchrotron radiation sources has opened a new chapter in this multi-disciplinary field of science.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1345
Author(s):  
Krystyna A. Deresz ◽  
Piotr Łaski ◽  
Radosław Kamiński ◽  
Katarzyna N. Jarzembska

The review provides a summary of the current methods of tracing photoexcitation processes and structural dynamics in the solid state, putting major emphasis on the X-ray diffraction techniques (time-resolved Laue diffraction on synchrotron sources and time-resolved serial femtosecond crystallography on X-ray free-electron lasers). The recent developments and nowadays experimental possibilities in the field are discussed along with the data processing and analysis approaches, and illustrated with some striking literature examples of the respective successful studies. Selected complementary methods, such as ultrafast electron diffraction or time-resolved X-ray absorption spectroscopy, are briefly presented.


Author(s):  
Maoxu Qian ◽  
Mehmet Sarikaya ◽  
Edward A. Stern

EXELFS (extended energy loss fine structure) spectroscopy contains unique information of local atomic structure, same as XAFS (X-ray fine structure), but has several advantages overXAFS, such as having high spatial resolution (nanoscale versus bulk), better low Z element sensitivity, parallel detectability, and no dependability on synchrotron-radiation-sources. Due to poor statistical total counts, however, EELS data quality is inferior and, therefore, EXELFS technique has not been well developed to its full advantages. The main limitations in EELS acquisition are channel-to-channel gain variations (CCGV) in the parallel detection system and low S/N ratio due to the instability of instrument that prevents long acquisition times. Techniques that circumvent CCGV, such as first or second difference, do not allow the retrieval of EXELFS signal from the spectra. Recently we have improved the EELS data acquisition technique so that CCGV could effectively be corrected and statistical fluctuations could reach a level much lower man that in the fine structure.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 628
Author(s):  
Suraj Pandey ◽  
Ishwor Poudyal ◽  
Tek Narsingh Malla

With time-resolved crystallography (TRX), it is possible to follow the reaction dynamics in biological macromolecules by investigating the structure of transient states along the reaction coordinate. X-ray free electron lasers (XFELs) have enabled TRX experiments on previously uncharted femtosecond timescales. Here, we review the recent developments, opportunities, and challenges of pump-probe TRX at XFELs.


2012 ◽  
Vol 1405 ◽  
Author(s):  
Haoyan Wei ◽  
Choong-Shik Yoo

ABSTRACTUnderstanding the dynamic responses of energetic materials is central to evaluating the energetic and chemical performance as well as development of novel energetic solids. These include thermal, mechanical and chemical processes in a relevant temporal (ns-to-μs) and spatial (atomistic-to-micro) scales. In this paper, we describe our recent developments of time-resolved characterization techniques capable of probing real-time structural and chemical evolutions across single event, metal combustions and intermetallic reactions. The methods utilize highspeed microphotography, spectro-pyrometry, and synchrotron x-ray powder diffraction and determine in-situ the particle sizes, temperatures and structures in μs time resolution. These timeresolved data provide insights into the fragmentation dynamics, thermal history, phase transitions, reaction mechanisms, and chemical kinetics governing these exothermic metal combustions and intermetallic reactions.


Sign in / Sign up

Export Citation Format

Share Document