The impact of a budgetary design system: direct and indirect models

2006 ◽  
Vol 21 (2) ◽  
pp. 148-165 ◽  
Author(s):  
Desmond Yuen
Keyword(s):  
2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Gao Chaomeng ◽  
Wang Yonggang

With the continuous development of China’s social economy, the competitiveness of brand market is gradually increasing. In order to improve their own level in brand building, major enterprises gradually explore and study visual communication design. Brand visual design has also received more and more attention. Building a complete and rich visual design system can improve the brand level and attract users to consume. Based on the abovementioned situation, this paper proposes to use collaborative filtering algorithm to analyze and study brand visual design. Firstly, a solution is proposed to solve the problem of low accuracy of general recommendation algorithm in brand goods. Collaborative filtering algorithm is used to analyze the visual communication design process of enterprise brand. Research on personalized image design according to consumers’ trust and recognition of brand design is conducted. In traditional craft brand visual design, we mainly study the impact of image design on consumer behavior. The brand loyalty model is used to predict and analyze the visual design effect. Also, the user’s evaluation coefficient is taken as the expression of brand visual design recognition. Finally, the collaborative filtering algorithm is optimized to improve the consumer similarity based on the original algorithm. The results show that the brand visual design using collaborative filtering algorithm can help enterprises obtain greater benefits in their own brand construction. It provides effective data help in the development of traditional craft brands.


2019 ◽  
Author(s):  
Cong Cao ◽  
◽  
Suning Xu ◽  

This paper aims to provide theoretical method support and practical experience for creating environment friendly urban space by low-impact urban design methods, and discussed on two aspects of theory and practice. Firstly, the definition of low-impact urban design in the context of Chinese cities is expounded by combing the development stage of urban design environment view and analysing the development needs of Chinese cities. Then, it discusses the framework content and evolution process of low-impact urban design in China, and puts forward the view that low-impact development elements and low-impact design control elements are mutually dependent and mutually reinforcing. Next, the objects and related characteristics of low-impact urban design are explained from multiple perspectives, as object system, object composition and basic characteristics. Relevant strategy formulation is the focus of this paper. First, it is necessary to establish a low-impact urban design system in coordination with legal planning, so as to help implement the low-impact design concept with the seriousness and execution of legal planning. Secondly, the framework of low-impact urban design control elements including 5 different layers is established, which can effectively evaluate and optimize the impact of design results on the city. Thirdly, the value evaluation mechanism of dynamic cycle is proposed, which is helpful to the implementation of low-impact urban design and the restoration of design intention. Finally, the paper takes Beijing waterfront urban design evaluation as an example to apply the low impact evaluation model proposed in this paper, and satisfactory results were obtained


2011 ◽  
Vol 133 (10) ◽  
Author(s):  
Erich Devendorf ◽  
Kemper Lewis

In distributed design processes, individual design subsystems have local control over design variables and seek to satisfy their own individual objectives, which may also be influenced by some system level objectives. The resulting network of coupled subsystems will either converge to a stable equilibrium or diverge in an unstable manner. In this paper, we study the dependence of system stability on the solution process architecture. The solution process architecture describes how the design subsystems are ordered and can be either sequential, parallel, or a hybrid that incorporates both parallel and sequential elements. In this paper, we demonstrate that the stability of a distributed design system does indeed depend on the solution process architecture chosen, and we create a general process architecture model based on linear systems theory. The model allows the stability of equilibrium solutions to be analyzed for distributed design systems by converting any process architecture into an equivalent parallel representation. Moreover, we show that this approach can accurately predict when the equilibrium is unstable and the system divergent when previous models suggest that the system is convergent.


Author(s):  
Keiji Tajiri ◽  
Jinhui Zhao ◽  
William C. Hohlweg ◽  
Haijie Zhang

Automatic optimization techniques have been used in recent years to facilitate more rapid analyses of different design options with multiple performance objectives. Typically, this process has been used during new product development. In this paper, a design system is presented, which enables the multipoint, multi-objective optimization of the centrifugal compressor stage aerodynamic components. Moreover, it is applied to a design modification of a multistage compressor, during the manufacturing cycle, for risk mitigation. The system is based on the application of the Isight code for coupling of one dimensional direct design and analysis with multi-objective genetic algorithms, design of experiment, and response surface method. The design system was applied to a redesign of the diffuser, crossover, and return channel of two stages in a multistage compressor. The geometry parameterization is performed by a one dimensional analysis method where the diffuser width, crossover inlet and exit width and associated inner and outer radii, are used to describe the meridional flow path while holding the return vane geometry unchanged. Centrifugal compressor performance parameters, such as polytropic head and efficiency at the client rated point, head rise to surge, and choke flow capacity are evaluated during the optimization process. The example confirmed the validity of the system to perform the optimization of turbomachine components in a time efficient manner to meet production schedule. The system also allowed for a sensitivity analysis of the impact of geometry parameters on the aerodynamic performance, contributing to the development of guidelines for manufacturers to design new products and mitigate the performance risk on test floor.


Author(s):  
Gerald A. Huber ◽  
Xishun Zhang ◽  
Robin Fontaine

The Strategic Highway Research Program (SHRP) spent $50 million researching asphalt binders and asphalt mixtures and provided three main products: an asphalt binder specification, an asphalt mixture specification, and Superpave, an asphalt mixture design system that encompasses both the binder and mixture specification. SHRP researchers have provided tools that promise more robust asphalt mixtures with reduced risk of premature failure. Implementation of the specifications and mix design system will require overcoming several obstacles. Superpave must be demonstrated to be practical and easy to use. The impact of Superpave aggregate requirements on aggregate availability must be determined. The Superpave gyratory compaction procedure has been uniquely defined and then calibrated to traffic volume. The reasonableness of this approach must be tested in widespread application. Perhaps the largest implementation hurdle exists in the performance models. Expensive test equipment is necessary to do the performance-based tests. The performance predictions must be established as reasonable to justify the cost. A highway reconstruction project containing three Superpave Level 1 mix designs is documented including quality control done with the Superpave gyratory compactor. Superpave Level 2 performance-based tests were carried out to predict permanent deformation of the design and the mixture as constructed. The performance-based engineering properties obtained from the tests are evaluated, and the reasonableness of the performance prediction models is discussed.


2007 ◽  
Vol 56 (9) ◽  
pp. 29-36 ◽  
Author(s):  
M. Möderl ◽  
T. Fetz ◽  
W. Rauch

A traditional procedure for performance evaluation of systems is to test approaches on one or more case studies. However, it is well known that the investigation of real case studies is a tedious task. Moreover, due to the limited amount of case studies available it is not certain that all aspects of a problem can be covered in such procedure. With increasing computer power an alternative methodology has emerged, that is the investigation of a multitude of virtual case studies by means of a stochastic consideration of the overall performance. Within the frame of this approach we develop here a modular design system (MDS) for water distribution systems (WDSs). With the algorithmic application of such a MDS it is possible to create a variety of different WDSs. As an example of stochastic performance evaluation the impact of pipe breakages on WDSs is estimated applying a pressure driven performance indicator. This performance indicator is evaluated stochastically. Likewise the performance evaluation of a variety of WDSs is also performed stochastically. Cumulative distribution function, histogram and other statistical properties of 2,280×1,000 performance results of the different WDSs are calculated to highlight the applicability of the introduced stochastic approach.


Author(s):  
Edward H. McMahon

Abstract In group design simultaneous input from multiple individuals, communications between group members, and management of the group effort make the process difficult to study. This paper describes the preliminary results of a computer-based system which was developed to study group design in engineering. Three groups of engineering designers were studied using the computer based group design system (GDS). Observations were made regarding the impact of management style (methodology) on the design process, the impact of communications on the overall group activity, the sequence of transactions leading to the conceptual design decision, and the involvement of group members. The use of systematic procedures appears to encourage more equal participation, a decision less influenced by individual choice, and reduced authority hierarchy.


Author(s):  
Tetjana Gnitetska ◽  
Galyna Gnitetska ◽  
Evgeniy Pustovit

The use of electronic libraries of parameterized images of objects made in the form of dynamic blocks in the practice of design work refers to resource-saving technologies that are actively used in modern production. The article considers an example of creating parameterized simplified images of fasteners using dynamic blocks of the computer-aided design system AutoCAD. Dynamic blocks can be used to create electronic image libraries of technological, design, electrical and other elements. The algorithm considered in the article to create dynamic blocks of simplified images of fasteners is introduced into the educational process at the Kyiv Polytechnic Institute named after Igor Sikorsky in the course "Engineering and Computer Graphics" and can be used in design practice. The testing of this algorithm in the training process yielded a positive result. When using parameterized drawings, students understand more deeply the impact of each parameter on the design of the object.


Sign in / Sign up

Export Citation Format

Share Document