Compact fluorescent lamps and electricity consumption trend in residential buildings in Ilorin, Nigeria

2011 ◽  
Vol 5 (2) ◽  
pp. 162-168 ◽  
Author(s):  
Bolaji F. Sule ◽  
Kajogbola R. Ajao ◽  
Habeeb A. Ajimotokan ◽  
Mohammed K. Garba
Energy ◽  
2009 ◽  
Vol 34 (9) ◽  
pp. 1355-1363 ◽  
Author(s):  
J. Trifunovic ◽  
J. Mikulovic ◽  
Z. Djurisic ◽  
M. Djuric ◽  
M. Kostic

Author(s):  
Diego Da Silva de Souza ◽  
Paulo De Souza Silva ◽  
David Barbosa de Alencar

The general objective of this article was to promote through bibliographic studies the two types of lamps, in addition to the comparative analysis of compact fluorescent lamps versus LED lamps: an economy factor. The specific objectives were: - to explain the conceptual precepts on: lighting engineering, definitions, characteristics, invention, operation, defect, quality and the environments used and the NBRs regulations; - address the economic impact generated by the choice of LED lamps and compact fluorescent lamps; - emphasize on an economic feasibility study on the use of LED lamps and compact fluorescent lamps. The justification of the study is related, in the promotion regarding the use of LED lamps and compact fluorescents, in the factor that generates savings. Since the areas related to artificial lighting are responsible for a significant portion of energy demand, both on a large scale - such as lighting for public roads or industrial buildings - and on smaller scales - in commercial and residential buildings. Therefore, its promotion is crucial in the context of economic viability. The lamps provide the luminous energy, through which a better luminous efficiency is obtained. Currently, there are several types of lamps available, different in several aspects: luminous intensity, reproduction colors, energy efficiency, physical composition, method for emitting light, specific purposes, prices, among others. It is worth mentioning that the lamps differ from each other not only by the different luminous fluxes that they radiate, but also by the different powers they consume. In order to compare them, it is necessary to know how many lumens are generated per absorbed watt. This greatness is called energy efficiency. Thus, the proposal of a study was evidenced, in order to promote these luminous resources, in addition to emphasizing their economic viability.


2020 ◽  
pp. 1-78 ◽  
Author(s):  
Eliana Carranza ◽  
Robyn Meeks

Overloaded electrical systems are a major source of unreliable power. Using a randomized saturation design, we estimate the impact of compact fluorescent lamps (CFLs) on electricity reliability and household electricity consumption in the Kyrgyz Republic. Greater saturation of CFLs within a transformer leads to fewer outages, a technological externality benefitting all households, regardless of individual adoption. Spillovers in CFL adoption further reduce electricity consumption, contributing to increased reliability within a transformer. CFLs' impacts on household electricity consumption vary according to the effects on reliability. Receiving CFLs significantly reduces electricity consumption, but increased reliability permits greater consumption of electricity services.


2020 ◽  
Vol 12 (24) ◽  
pp. 10344
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Mohammed Itma

This paper targets the future energy sustainability and aims to estimate the potential energy production from installing photovoltaic (PV) systems on the rooftop of apartment’s residential buildings, which represent the largest building sector. Analysis of the residential building typologies was carried out to select the most used residential building types in terms of building roof area, number of floors, and the number of apartments on each floor. A computer simulation tool has been used to calculate the electricity production for each building type, for three different tilt angles to estimate the electricity production. Tilt angle, spacing between the arrays, the building shape, shading from PV arrays, and other roof elements were analyzed for optimum and maximum electricity production. The electricity production for each household has been compared to typical household electricity consumption and its future consumption in 2030. The results show that installing PV systems on residential buildings can speed the transition to renewable energy and energy sustainability. The electricity production for building types with 2–4 residential units can surplus their estimated future consumption. Building types with 4–8 residential units can produce their electricity consumption in 2030. Building types of 12–24 residential units can produce more than half of their 2030 future consumption.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4046 ◽  
Author(s):  
Sooyoun Cho ◽  
Jeehang Lee ◽  
Jumi Baek ◽  
Gi-Seok Kim ◽  
Seung-Bok Leigh

Although the latest energy-efficient buildings use a large number of sensors and measuring instruments to predict consumption more accurately, it is generally not possible to identify which data are the most valuable or key for analysis among the tens of thousands of data points. This study selected the electric energy as a subset of total building energy consumption because it accounts for more than 65% of the total building energy consumption, and identified the variables that contribute to electric energy use. However, this study aimed to confirm data from a building using clustering in machine learning, instead of a calculation method from engineering simulation, to examine the variables that were identified and determine whether these variables had a strong correlation with energy consumption. Three different methods confirmed that the major variables related to electric energy consumption were significant. This research has significance because it was able to identify the factors in electric energy, accounting for more than half of the total building energy consumption, that had a major effect on energy consumption and revealed that these key variables alone, not the default values of many different items in simulation analysis, can ensure the reliable prediction of energy consumption.


2015 ◽  
Vol 35 (1Sup) ◽  
pp. 89-97 ◽  
Author(s):  
Gabriel Alexis Malagon ◽  
Jeisson Bello Peña ◽  
Gabriel Ordóñez Plata ◽  
Cesar Duarte Gualdrón

<p class="MsoNormal" style="text-align: justify;"><span style="font-family: 'Century Gothic', sans-serif; font-size: 8pt; letter-spacing: -0.1pt;"><span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">This article presents an analysis and discussion on the performance of a circuit-based model for Compact Fluorescent Lamps (CFL) <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">in a 120V 60Hz power grid. This model is proposed and validated in previous scientific literature for CFLs in 230V 50Hz systems. <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">Nevertheless, the derivation of this model is not straightforward to follow and its performance in 120V 60Hz systems is a matter of <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">research work. In this paper, the analytical derivation of this CFL model is presented in detail and its performance is discussed when <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">predicting the current of a CFL designed to operate in a 120V 60Hz electrical system. The derived model is separately implemented <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">in both MATLAB<span style="font-family: OptimaLTStd; font-size: 5pt; color: #231f20; font-style: normal; font-variant: normal;">® <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">and ATP-EMTP<span style="font-family: OptimaLTStd; font-size: 5pt; color: #231f20; font-style: normal; font-variant: normal;">® <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">software using two different sets of parameters previously proposed for 230V 50Hz CFLs. These <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">simulation results are compared against laboratory measurements using a programmable AC voltage source. The measurements <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">and simulations considered seven CFLs 110/127V 60Hz with different power ratings supplied by a sinusoidal (not distorted) voltage <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">source. The simulations under these conditions do not properly predict the current measurements and therefore the set of parameters <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">and/or the model itself need to be adjusted for 120V 60Hz power grids.</span></span></span></span></span></span></span></span></span><br style="font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px;" /></span></span></span></span></span></span></p>


Sign in / Sign up

Export Citation Format

Share Document