scholarly journals COMPARATIVE ANALYSIS OF COMPACT FLUORESCENT LAMPS VERSUS LED LAMPS: AN ECONOMY FACTOR

Author(s):  
Diego Da Silva de Souza ◽  
Paulo De Souza Silva ◽  
David Barbosa de Alencar

The general objective of this article was to promote through bibliographic studies the two types of lamps, in addition to the comparative analysis of compact fluorescent lamps versus LED lamps: an economy factor. The specific objectives were: - to explain the conceptual precepts on: lighting engineering, definitions, characteristics, invention, operation, defect, quality and the environments used and the NBRs regulations; - address the economic impact generated by the choice of LED lamps and compact fluorescent lamps; - emphasize on an economic feasibility study on the use of LED lamps and compact fluorescent lamps. The justification of the study is related, in the promotion regarding the use of LED lamps and compact fluorescents, in the factor that generates savings. Since the areas related to artificial lighting are responsible for a significant portion of energy demand, both on a large scale - such as lighting for public roads or industrial buildings - and on smaller scales - in commercial and residential buildings. Therefore, its promotion is crucial in the context of economic viability. The lamps provide the luminous energy, through which a better luminous efficiency is obtained. Currently, there are several types of lamps available, different in several aspects: luminous intensity, reproduction colors, energy efficiency, physical composition, method for emitting light, specific purposes, prices, among others. It is worth mentioning that the lamps differ from each other not only by the different luminous fluxes that they radiate, but also by the different powers they consume. In order to compare them, it is necessary to know how many lumens are generated per absorbed watt. This greatness is called energy efficiency. Thus, the proposal of a study was evidenced, in order to promote these luminous resources, in addition to emphasizing their economic viability.

Proceedings ◽  
2019 ◽  
Vol 38 (1) ◽  
pp. 3 ◽  
Author(s):  
Javier ◽  
Jesús ◽  
Julio ◽  
Paulo

The requirements concerning the energy certification of buildings established in Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002, which was in turn modified by Directive 2010/31/EU of the European Parliament and of the Council, of 19 May 2010, regarding the energy efficiency of buildings, were transposed into Spanish legislation through Royal Decree 47/2007, dated January 19, through which a Basic Procedure for certification was approved of energy efficiency of new buildings, which was consolidated by Royal Decree 235/2013, of April 5, which approves the basic procedure for the certification of the energy efficiency of buildings. In said Royal Decree, it is established that existing buildings or units of buildings occupied by a public authority, must obtain an energy efficiency certificate and will have the obligation to display their energy efficiency label, when their total useful area exceeds 250 m2, and are usually frequented by the public. The Basic Procedure is established that must comply with the methodology for calculating the energy efficiency rating, considering those factors that have the greatest impact on their energy consumption, as well as the technical and administrative conditions for the energy efficiency certifications of the buildings. For this purpose, three software programs were promoted from the competent Ministry, one corresponding to the general option (LIDER-CALENER “HULC” unified tool) and two others corresponding to the simplified option (simplified procedures CE3 and CE3X), which allow the energy qualification to be carried out of buildings according to three types of buildings (residential, small and medium-sized tertiary, and large tertiary) that are increasing the requirements of the energy certification of the building depending on the type of the same. This study identifies the possible alternatives for improving energy efficiency over the initial qualification of the building, within a context of technical and economic feasibility, optimizing energy demand, reducing CO2 emissions and building energy consumption, being The study also compares the results obtained in the energy rating, between the general option and the simplified procedures, on an Andalusian health center in 1957, which corresponds to the typology of the Grand Tertiary building (GT).


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1309 ◽  
Author(s):  
Tomasz Szul ◽  
Stanisław Kokoszka

In many regions, the heat used for space heating is a basic item in the energy balance of a building and significantly affects its operating costs. The accuracy of the assessment of heat consumption in an existing building and the determination of the main components of heat loss depends to a large extent on whether the energy efficiency improvement targets set in the thermal upgrading project are achieved. A frequent problem in the case of energy calculations is the lack of complete architectural and construction documentation of the analyzed objects. Therefore, there is a need to search for methods that will be suitable for a quick technical analysis of measures taken to improve energy efficiency in existing buildings. These methods should have satisfactory results in predicting energy consumption where the input is limited, inaccurate, or uncertain. Therefore, the aim of this work was to test the usefulness of a model based on Rough Set Theory (RST) for estimating the thermal energy consumption of buildings undergoing an energy renovation. The research was carried out on a group of 109 thermally improved residential buildings, for which energy performance was based on actual energy consumption before and after thermal modernization. Specific sets of important variables characterizing the examined buildings were distinguished. The groups of variables were used to estimate energy consumption in such a way as to obtain a compromise between the effort of obtaining them and the quality of the forecast. This has allowed the construction of a prediction model that allows the use of a fast, relatively simple procedure to estimate the final energy demand rate for heating buildings.


2019 ◽  
Vol 11 (14) ◽  
pp. 3939 ◽  
Author(s):  
Antonio Artino ◽  
Gianpiero Evola ◽  
Giuseppe Margani ◽  
Edoardo Marino

All around the world, a huge amount of buildings have been built before the enforcement of specific codes for seismic resistance and energy efficiency. Particularly in Italy, over 74% of residential buildings were constructed before 1980, when only 25% of the territory was classified as seismic, and nearly 86% were built before 1991, when the first restrictive regulation on energy efficiency was issued. This means that most buildings need both seismic and energy renovation actions to improve their sustainability level. The proposed combined retrofit strategy for reinforced concrete framed buildings is based on the replacement of the external layer of double-leaf infill walls, made of hollow bricks, with high-performing AAC blocks: this solution can be implemented by operating mainly from the outside of the building, thus reducing occupants’ disruption during retrofitting. The generally neglected structural contribution of masonry infill panels is here considered using a recently developed macro-element modeling approach. The results suggest that, from a structural viewpoint, the proposed intervention involves the highest improvement at the damage limitation limit state, while lower upgrades are recorded at life safety limit state and near-collapse limit state. In regards to the energy issues, the energy demand can be reduced by 10% and 4% for heating and cooling, respectively, just by replacing the outer layer of blocks; further savings can be achieved through the application of a supplementary insulation layer.


2015 ◽  
Vol 19 (1) ◽  
pp. 167-178
Author(s):  
S.M. Shaahid

The governments world-wide are deliberating to promote renewable energy sources such as wind to mitigate increasing demand of energy and to overcome effects of pollution due to to use of fossil fuels. Integration of wind turbine generators (WTG) with the diesel plants is pursued widely to reduce dependence on fossil-fuels and to reduce carbon emissions. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (K.S.A) consume an estimated 10 - 40% of the total electric energy generated. The aim of this study is to analyze wind-speed data of Dhahran (East-Coast, K.S.A.) to assess the economic feasibility of utilizing hybrid wind-diesel power systems to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The hybrid systems simulated consist of different combinations of 100 kW commercial WTG supplemented with diesel generators. NREL?s (HOMER Energy?s) HOMER software has been employed to perform the techno-economic analysis. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity together with 175 kW diesel system, the wind penetration (at 37 m hub-height, with 0% annual capacity shortage) is 25%. The cost of generating energy (COE, $/kWh) from this hybrid wind-diesel system has been found to be 0.121 $/kWh (assuming diesel fuel price of 0.1$/liter). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel gensets decreases with increase in wind farm capacity. Emphasis has also been placed on wind penetration, un-met load, energy production and COE, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind-diesel systems, COE of different hybrid systems, etc.


2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 2071-2084 ◽  
Author(s):  
Norbert Harmathy ◽  
Danijela Urbancl ◽  
Darko Goricanec ◽  
Zoltán Magyar

The research elaborates various solutions using detailed economic evaluation and energy efficiency calculation and simulation technology for formulating applicable, energy and cost-efficient retrofit solutions of single-family residential buildings located in temperate climate areas. Primarily the annual energy demand for a reference existing single-family residential building was determined. The economic analysis was performed for six formulated refurbishment scenarios in order to determine which of the scenarios will demonstrate optimal performance both in energy and cost efficiency. A feasibility study was performed for the most efficient scenario, which included an economic evaluation of low temperature radiant heating systems were three energy suppliers (oil, natural gas and electricity for air to water heat pump) were compared. According to financial analyses the optimal scenario includes the replacement of windows, installation of 15 cm expanded polystyrene thermal insulation, low temperature radiant floor heating, with a payback period of ten years.


2020 ◽  
Vol 1 (1) ◽  
pp. 33-47
Author(s):  
Tran Viet Dung

AbstractVietnam has experienced an economic growth accompanied by increasing energy demand and inadequate supplies. Like most developing countries, the increased inefficient use of energy in Vietnam leads to increased greenhouse gas emissions and high energy costs for consumers. Also, the traditional sources of energy are not sufficient to satisfy the demand of the economic sectors.With the negative impact of climate change on water resources and the depletion of coal, oil and gas reserves, Vietnam must diversify and integrate other forms of renewable energies into its energy mix. The efficient use of renewable energy resources can boost economic development. Thus, the policies for endorsing renewable energies and energy efficiency are playing a vital role in ensuring the sustainable development for Vietnam’s future. This paper examines the legal and policy framework influencing the deployment of renewable energies and energy efficiency in Vietnam. The paper also attempts to identify major barriers to a large scale deployment of renewable energies and energy efficiency technologies and offers some possible solutions.


2018 ◽  
Vol 3 (10) ◽  
pp. 191-202
Author(s):  
Mohd Najib Mohd Salleh ◽  
Mohd Zin Kandar ◽  
Siti Rasidah Md Sakip

Energy demand in buildings can reduce by improving energy efficiency. MS1525 has recommended that energy efficiency for Non-Residential Buildings in Malaysia to be not more than 135kWh/m²/year. A school building is a non-residential building and has major social responsibilities. Based on the theory of building energy-efficiency, energy efficiency can be achieved through three main factors: a) design of buildings; b) design of services; and c) user behavior. This study aims to investigate the user perceptions in High-Performance Schools. Keywords: User perception; building energy index; building energy efficiency; school building. eISSN 2514-7528 © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI:https://doi.org/10.21834/jabs.v3i10.318  


Author(s):  
Kenneth J. Andersen

This paper reviews the change in energy efficiency of lighting technology during the 30-year period between the energy crises of the 1970’s oil embargo and last year’s de-regulated wholesale market, electricity price spikes. Lighting power requirements have been cut in half for new commercial buildings, dropping from 3 to 1.5 watts or less per square foot of conditioned space. Fluorescent lighting technology has changed from four-foot T-12 lamps requiring 40 watts, to high-lumen, 32-watt T-8 lamps. Copper intensive and noisy magnetic ballasts have been replaced with lightweight, high frequency electronic ballasts lowering power from 10 to one watt per fixture. Today this trend continues with the movement away from Edison’s incandescent lamp to compact fluorescent lamps (CFL) that save 70% of the electrical energy. In response to the wholesale electricity prices spikes, the Northwest Energy Efficiency Alliance partnered with regional electric utilities and retail stores to offer CFL discount coupons. As a result, CFL sales rose from about 500,000 in 2000 to over 8 million in 2001. This is one more example of how energy efficiency programs sponsored by the nation’s electric utilities have driven both technology and the market to change.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2436 ◽  
Author(s):  
Julià Coma ◽  
José Miguel Maldonado ◽  
Alvaro de Gracia ◽  
Toni Gimbernat ◽  
Teresa Botargues ◽  
...  

The building sector accounts for one third of the global energy consumption and it is expected to grow in the next decades. This evidence leads researchers, engineers and architects to develop innovative technologies based on renewable energies and to enhance the thermal performance of building envelopes. In this context, the potential applicability and further energy performance analysis of these technologies when implemented into different building typologies and climate conditions are not easily comparable. Although massive information is available in data sources, the lack of standardized methods for data gathering and the non-public availability makes the comparative analyses more difficult. These facts limit the benchmarking of different building energy demand parameters such as space heating, cooling, air conditioning, domestic hot water, lighting and electric appliances. Therefore, the first objective of this study consists in providing a review about the common typologies of residential buildings in Europe from the main data sources. This study contains specific details on their architecture, building envelope, floor space and insulation properties. The second objective consists in performing a cross-country comparison in terms of energy demand for the applications with higher energy requirements in the residential building sector (heating and domestic hot water), as well as their related CO2 emissions. The approach of this comparative analysis is based on the residential building typology developed in TABULA/EPISCOPE projects. This comparative study provides a reference scenario in terms of energy demand and CO2 emissions for residential buildings and allows to evaluate the potential implementation of new supply energy technologies in hot, temperate and cold climate regions. From this study it was also concluded that there is a necessity of a free access database which could gather and classify reliable energy data in buildings.


Sign in / Sign up

Export Citation Format

Share Document