Vision-force guided precise robotic assembly for 2.5D components in a semistructured environment

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Boyoung Kim ◽  
Minyong Choi ◽  
Seung-Woo Son ◽  
Deokwon Yun ◽  
Sukjune Yoon

Purpose Many manufacturing sites require precision assembly. Particularly, similar to cell phones, assembly at the sub-mm scale is not easy, even for humans. In addition, the system should assemble each part with adequate force and avoid breaking the circuits with excessive force. The purpose of this study is to assemble high precision components with relatively reasonable vision devices compared to previous studies. Design/methodology/approach This paper presents a vision-force guided precise assembly system using a force sensor and two charge coupled device (CCD) cameras without an expensive 3-dimensional (3D) sensor or computer-aided design model. The system accurately estimates 6 degrees-of-freedom (DOF) poses from a 2D image in real time and assembles parts with the proper force. Findings In this experiment, three connectors are assembled on a printed circuit board. This system obtains high accuracy under 1 mm and 1 degree error, which shows that this system is effective. Originality/value This is a new method for sub-mm assembly using only two CCD cameras and one force sensor.

Author(s):  
E. A. Sobolev ◽  

The article describes customization methods for printed circuit board projects in computer-aided design system Xpedition Enterprise. Two approaches has been detected, first – setting up project using built-in instruments, second – implementation of a new instruments using integrated programming environment.


Author(s):  
V. V. Zhadnov ◽  
A. N. Zotov

This article discusses problems of importing data from system of CAD (Computer-Aided Design) to dependability prediction software. Characteristics of dependability of electronic modules to a large extent define reliability of electronic equipment which contains them. Dependability of electronic modules is established on the early stages of engineering and is usually calculated by special software. Obviously, the dependability prediction result accuracy will depend on the quality and fullness of input data. Thus, the purpose of this study is to improve the accuracy of dependability prediction of electronic modules calculation results in dependability prediction software by automating the process of inputting data about electrical components and PCB’s (Printed Circuit Board) from CAD-system. The object of the study is typical information about electronic modules which is needed to calculate dependability on early stages of engineering with taking into account the probabilistic characteristics of the life components of its electronic components. The subject of the study are methods, models and algorithms applicable to the transferring data from CAD-system to dependability prediction software. Based on results of analysis of existing data transferring methods between software packages from different vendors, usage of Excel tables and customizable templates was justified. Practical implementation of this method was developed for Altium Designer and ASONIKA-K-SCh dependability prediction software package. An import program was developed which allowed to transfer data from Altium Designer to ASONIKA-K-SCh using Excel tables and customizable templates. The import program as integrated into ASONIKA-K-SCh software. Practical usage showed that it allowed not only to reduce laboriousness of PCB’s and electronical components’ data inputting, but also to reduce a great amount of possible mistakes.


2019 ◽  
pp. 130-133
Author(s):  
A. Yu. Gladkevich

Describes the process of improving and developing tools in computer‑aided design system Delta Design. Currently, the modern  process of PCB development is quite complex and time‑consuming process. Existing CAD systems make it easier to design a  printed circuit Board model by providing powerful development tools. Along with the increasing complexity of modern printed  circuit boards, the requirements for development tools are also growing, making them constantly improve. Using the example  of  the  Delta  Design  system,  the  process  of  improving  the  tool  for  moving  track  segments  is  described.  The  analysis  of  the  advantages and disadvantages of the existing tool is made, and the decision on the need to develop a new algorithm is justified.  Of the two proposed variants of such an algorithm, the optimal one was chosen in terms of the quality of the result obtained and  the convenience of operation.


Designs ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 28 ◽  
Author(s):  
Ross J. Friel ◽  
Maria Gerling-Gerdin ◽  
Emil Nilsson ◽  
Björn P. Andreasson

Background: The purpose of this study was to determine if 3D printed lenses with wavelength specific anti-reflective (AR) surface structures would improve beam intensity and thus radar efficiency for a Printed Circuit Board (PCB)-based 60 GHz radar. This would have potential for improved low-cost radar lenses for the consumer product market. Methods: A hyperbolic lens was designed in 3D Computer Aided Design (CAD) software and was then modified with a wavelength specified AR structure. Electromagnetic computer simulation was performed on both the ‘smooth’ and ‘AR structure’ lenses and compared to actual 60 GHz radar measurements of 3D printed polylactic acid (PLA) lenses. Results: The simulation results showed an increase of 10% in signal intensity of the AR structure lens over the smooth lens. Actual measurement showed an 8% increase in signal of the AR structure lens over the smooth lens. Conclusions: Low cost and readily available Fused Filament Fabrication (FFF) 3D printing has been shown to be capable of printing an AR structure coated hyperbolic lens for millimeter wavelength radar applications. These 3D Printed AR structure lenses are effective in improving radar measurements over non-AR structure lenses.


2013 ◽  
Vol 24 ◽  
pp. 1360027
Author(s):  
JIAN-LIN HUANG ◽  
SHENG-JUI CHEN ◽  
GWO-JEN WU ◽  
CHUNG-LIN WU ◽  
SHEAU-SHI PAN

The shear force sensor is one of the key elements in future robotic industry, it is of great importance in applications where robotic arms are required to delicately interact with objects to be handled. In this paper, we present the development of a capacitive shear force capable of sensing shear forces in two degrees of freedom. The fabrication of the sensor is based on the printed circuit board (PCB) fabrication process, a well-known and mature technology. We adopt the capacitance sensing scheme for its high sensitivity and easy implementation. For sensor characterization, we used a force gauge and an optical interferometer to measure sensor's parameters including its sensing coefficient and resolution. The dimension of our prototype shear force sensor including the metal housing is 26 mm×13 mm×58 mm suitable for the integration with commercial robotic grippers. For sensor performance, we achieved a shear force sensing coefficient of 23.3 fF/N and a resolution of smaller than 5mN.


1986 ◽  
Vol 72 ◽  
Author(s):  
M. R. Notis ◽  
S. K. Tarby ◽  
T. Cawley

AbstractTernary solder alloys have come into wide use in chip bonding, printed circuit board connection, and in ceramic package sealing applications. Little is known concerning phase equilibria in many of these systems. Methods for predicting phase equilibria in the ternary (Pb+Sn)+Ag system using CAD (computer aided design) are described, and a predicted value for the ternary eutectic temperature is compared with values obtained by differential scanning calorimetry (DSC) for this system.


2018 ◽  
Vol 10 (1) ◽  
pp. 11-17
Author(s):  
Putut Son Maria ◽  
Elva Susianti

Some Electronics Computer Aided Design (ECAD) softwares have provided several track shapes to design a Printed Circuit Board (PCB), such as right angle, rounded and trapezoidal. However, it is quite difficult to find scientific literature that can be used as a guide which explains and compiles directly about each character of the geometry. This study aims to analyze and to observe the electrical characteristics of the geometry shape on the Printed Circuit Board (PCB) path by using the finite element method. Each PCB path shape is modeled according to its geometry and physical properties, then calculated for its electrical quantity and be observed for its performance at given current. Simulation and numerical calculations showed that the shape of trapezoidal and rounded geometry have lower resistance and planar inductance of 6.8% and 7.39% respectively than the right angle shape.


Sign in / Sign up

Export Citation Format

Share Document