Effect of main controlling factor on the corrosion behaviour of API X65 pipeline steel in the CO2/oil/water environment

2017 ◽  
Vol 64 (4) ◽  
pp. 371-379 ◽  
Author(s):  
Yuanpeng Cheng ◽  
Zili Li ◽  
Yalei Zhao ◽  
Yazhou Xu ◽  
Qianqian Liu ◽  
...  

Purpose The purpose of this paper was to investigate the corrosion behaviour of API X65 pipeline steel in the simulated CO2/oil/water emulsion using weight loss technique, potentiodynamic polarization technique and characterization of the corroded surface techniques. Design/methodology/approach The weight loss analysis, electrochemical study and surface investigation were carried out on API X65 pipeline steel that had been immersed in the CO2/oil/water corrosive medium to understand the corrosion behaviour of gathering pipeline steel. The weight loss tests were carried out in a 3L autoclave, and effects of temperature, CO2 partial pressure, water cut and flow velocity on the CO2 corrosion rate of API X65 pipeline steel were studied. Electrochemical studies were carried out in a three-electrode electrochemical cell with the test temperature was 60°C, and the CO2 partial pressure was 1 atm by recording open circuit potential/time and potentiodynamic polarization characteristics. The surface and cross-sectional morphologies of corrosion product scales were characterized using scanning electron microscopy. The phases of corrosion product scales were investigated using X-ray diffraction. Findings The results showed that water cut was the main controlling factor of API X65 steel corrosion under the conditions of CO2/oil/water multiphase flow, and it had significant impact on corrosion morphology. In the case of higher water cut or pure water phase, general corrosion occurred on the steel surface. While water cut was below 70 per cent, corrosion morphology transformed into localized corrosion, crude oil decreased corrosion rate significantly and played a role of inhibitor. Crude oil hindered the corrosion scales from being dissolved by corrosive medium and changed dimension and accumulation pattern of the crystal grain, thickness and structure of the corrosion scales; thus, it influenced the corrosion rate. The primary corrosion product of API X65 steel was ferrous carbonate, which could act as a protective film at low water cut so that the corrosion rate can be reduced. Originality/value The results can be helpful in selecting the suitable corrosion inhibitors and targeted anti-corrosion measures for CO2/oil/water corrosive environment.

2019 ◽  
Vol 66 (5) ◽  
pp. 671-682
Author(s):  
Yuanpeng Cheng ◽  
Yu Bai ◽  
Shanfa Tang ◽  
Dukui Zheng ◽  
Zili Li ◽  
...  

Purpose The purpose of this paper is to investigate the corrosion behavior of X65 steel in the CO2-saturated oil/water environment using mass loss method, potentiodynamic polarization technique and characterization of the corroded surface techniques. Design/methodology/approach The weight loss analysis, electrochemical study and surface investigation were carried out on X65 steel that had been immersed in the CO2/oil/water corrosive medium to understand the corrosion behavior of gathering and transportation pipeline steel. The weight loss tests were carried out in a 3 L autoclave, and effects of water cut and temperature on the CO2 corrosion rate of X65 steel were studied. Electrochemical studies were carried out in a three-electrode electrochemical cell with the test temperature was 60°C, and the CO2 partial pressure was 1 atm by recording open circuit potential/time and potentiodynamic polarization characteristics. The surface and cross-sectional morphologies of corrosion product scales were characterized using scanning electron microscopy. The phases of corrosion product scales were investigated using x-ray diffraction. Findings The results showed that due to the wetting and adsorption of crude oil, the corrosion morphology of X65 steel changed under different water cuts. When the water cut of crude oil was 40-50 per cent, uniform corrosion occurred on the steel surface, accompanied by local pitting. While the water cut was 70-80 per cent, the resulting corrosion product scales were thick, loose and partial shedding caused platform corrosion. When the water cut was 90 per cent, the damaged area of platform corrosion was enlarged. Crude oil can hinder the corrosion scales from being dissolved by the corrosive medium, and change dimension and accumulation pattern of the crystal grain, thickness and structure of the corrosion scales. Under the corrosion inhibition effect of crude oil, the temperature sensitive point of X65 steel corrosion process moved to low temperature, appeared at about 50°C, lower corrosion rate interval was broadened and the corrosion resistance of X65 steel was enhanced. Originality/value The results can be helpful in selecting the applicable corrosion inhibitors and targeted anti-corrosion measures for CO2-saturated oil/water corrosive environment.


2019 ◽  
Vol 66 (3) ◽  
pp. 307-316 ◽  
Author(s):  
Jun Wang ◽  
Zili Li ◽  
Gan Cui ◽  
JianGuo Liu ◽  
Chuanping Kong ◽  
...  

Purpose The purpose of this paper is to study the corrosion behaviors of X70 steel under direct current (DC) interference at 0-1,200 A/m2 in simulated soil solution. Design/methodology/approach The Tafel polarization curves of X70 steel under DC interference were tested using electrochemical method, the corrosion rate was calculated using weight-loss method and the change in steel surface was analyzed by optical microscopy. Findings The results showed that E-I polarization curves under 200-1,200 A/m2 interference were linear; with an increase in the DC density, the corrosion potential of X70 steel shifted positively, solution pH after the weight-loss tests increased and corrosion rate increased linearly. A mathematical relationship between polarization resistance Rp and current density was established. Corrosion morphology indicated that pitting corrosion and crevice corrosion occurred on the X70 steel under DC interference in simulated soil solution. Originality/value All tests were conducted at a relative higher DC density (200-1,200 A/m2). The linear fitting method is proposed to fit data of Tafel polarization curves under DC interference. This study provides guidelines for safe operation of X70 steel pipelines.


2018 ◽  
Vol 65 (2) ◽  
pp. 176-189 ◽  
Author(s):  
Younes El Kacimi ◽  
Mouhsine Galai ◽  
Khaoula Alaoui ◽  
Rachid Touir ◽  
Mohamed Ebn Touhami

Purpose The purpose of this paper is to study the effect of silicon and phosphorus content in steel suitable for galvanizing on its corrosion and inhibitor adsorption processes in steels/cetyltrimethylammonium bromide combined and KI (mixture)/5.0 M hydrochloric acid systems has been studied in relation to the temperature using chemical (weight loss), Tafel polarization, electrochemical impedance spectroscopy (EIS), scanning electronic microscope (SEM) analysis and Optical 3D profilometry characterization. All the methods used are in reasonable agreement. The kinetic and thermodynamic parameters for each steels corrosion and inhibitor adsorption, respectively, were determined and discussed. Results show that the adsorption capacity for Steel Classes A and B are better than Steel Class C surfaces depending on their silicon and phosphorus content. Surface analyses via SEM and Optical 3D profilometry was used to investigate the morphology of the steels before and after immersion in 5.0 M HCl solution containing mixture. Surface analysis revealed improvement of corrosion resistance of Steels Classes A and B in the presence of mixture more than Classes C. It has been determined that the adsorbed protective film on the steels surface heterogeneity markedly depends on steels compositions, that is, the heterogeneity increases with decreasing silicon and phosphorus content. Design/methodology/approach The effect of silicon and phosphorus content in Steels Classes A, B and C on its corrosion and inhibitor mixture adsorption processes in 5.0 M HCl solution has been studied by weight loss, potentiodynamic polarization, EIS and surface analysis. Findings The inhibition efficiency of mixture follows the order: (Steel Class A) > (Steel Class B) > Steel Class C) and depends on their compositions in the absence of mixture according on their silicon and phosphorus content, that is, the corrosion rate increases with increasing of the silicon and phosphorus content. A potentiodynamic polarization measurement indicates that the mixture acts as mixed-type inhibitor without changing the mechanism of corrosion process for the three classes of mild steels. Originality/value Corrosion rate mild steels in 5.0 M HCl depends on their compositions in the absence of mixture according to their silicon and phosphorus content, that is, the corrosion rate increases with increasing silicon and phosphorus content. The adsorbed protective film on the steels surface heterogeneity markedly depends on steels class’s compositions, that is, the heterogeneity increases with decreasing silicon and phosphorus content.


2012 ◽  
Vol 58 (2) ◽  
Author(s):  
W. B. Wan Nik ◽  
S. Syahrullail ◽  
R. Rosliza ◽  
M. M. Rahman ◽  
M. F. R. Zulkifli

The aim of this study is to determine the corrosion effect of palm oil methyl ester (POME) on aluminium alloy 5083 (AA5083). The static immersion test was carried out at 60°C for 68 days according to ASTM G–31–72. The corrosion analysis was done by using weight loss method and electrochemical test. The result from weight loss method shows the decreasing in weight loss of AA5083 which signifies the ability of POME to reduce corrosion rate. The electrochemical test shows the decreasing in polarization resistance,Rp, while the corrosion current densities, Icorr, increase. The corrosion rate reduces from 2.250mpy to 0.1946mpy. The low concentration of fatty acid C18:2 and high anti oxidant element contributes to the reduction of corrosion rate of AA5083 in POME.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Arman Abdullah ◽  
Nordin Yahaya ◽  
Norhazilan Md Noor ◽  
Rosilawati Mohd Rasol

Various cases of accidents involving microbiology influenced corrosion (MIC) were reported by the oil and gas industry. Sulfate reducing bacteria (SRB) have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were investigated using a weight loss method, an open circuit potential method (OCP), and a potentiodynamic polarization curves method in anaerobic conditions. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were then used to determine the corrosion morphology in verifying the SRB activity and corrosion products formation. Results from the study show that the corrosion rate (CR) of weight loss method for the isolated SRB is recorded as 0.2017 mm/yr compared to 0.2530 mm/yr for ATCC 7757. The Tafel plot recorded the corrosion rate of 0.3290 mm/yr for Sg. Ular SRB and 0.2500 mm/yr forDesulfovibrio vulgaris. The results showed that the consortia of isolated SRB were of comparable effects and features with the single ATCC 7757 strain.


2018 ◽  
Vol 11 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Lin Xu ◽  
Jie Xu ◽  
Ming-biao Xu ◽  
Si-yang Li ◽  
Shuai Liu ◽  
...  

Introduction: The production casing of 3% Cr steel has encountered severe internal corrosion in Huizhou Oilfield. To disclose corrosion behavior of inner casing, a series of corrosion exposure tests were systematically conducted on 3% Cr coupons in terms of in-field conditions. Material and Methods: Influence of exposure time, temperature, and water-cut on the CO2 corrosion of 3% Cr steel was investigated, and analyses on weight loss, composition and morphology of corrosion product, and Tafel polarization curves were further carried out. Result: The results showed that the corrosion rate of 3% Cr steel increased with increasing temperature, but such trend descended when the temperature exceeded 65°C due to formation of an compact and adherent corrosion product film on the surface of 3% Cr coupons. While varying exposure time from 7 days to 14 days, the corrosion rate decreased, and the Cr and O enrichment was determined in the corrosion products. The corrosion rate of 3% Cr steel increased with a continuous increment of water-cuts, especially when the water-cut was larger than 40%. Conclusion: The localized corrosion can happen at the lower water-cut due to the presence of amorphous films. The main corrosion products were FeCO3, Cr5O12, Fe2O3, and Fe-Cr. Entry of CO2 to the simulated formation water caused an increase in the anodic Tafel slope, and accelerated dissolution of 3% Cr steel.


2019 ◽  
Vol 66 (5) ◽  
pp. 613-620
Author(s):  
Jiaxing Cai ◽  
Xuequn Cheng ◽  
Baijie Zhao ◽  
Linheng Chen ◽  
Yi Fan ◽  
...  

Purpose The purpose of this paper is to understand the process of failure of scale and the corrosion resistance of scale to the substrate in an atmospheric environment. Design/methodology/approach The corrosion behaviour of X65 pipeline steel with different types of oxide scale was analysed using the natural environment exposure corrosion test, scanning electron microscopy analysis, electrochemical corrosion polarization curve test and other methods in a warehouse environment. Findings The results of this research show that one type of oxide scale, which is rough, has an uneven microstructure, and exhibits weak adhesion to the matrix, does not protect the substrate from corrosion. Conversely, the uniform, dense oxide scale, which exhibits strong adhesion to the matrix, provides effective protection to the steel. However, as the corrosion develops, the corrosion rate of the substrate tends to accelerate, especially when the structure of the oxide scale is damaged to a certain extent. Originality/value The corrosion mechanism of the oxide scale on hot rolled steel in an atmospheric environment has been proposed.


2019 ◽  
Vol 66 (6) ◽  
pp. 861-867 ◽  
Author(s):  
G. Yoganjaneyulu ◽  
Y. Phaneendra ◽  
V.V. Ravikumar ◽  
C. Sathiya Narayanan

Purpose The purpose of this paper is to investigate the void coalescence and corrosion behaviour of titanium Grade 4 sheets during single point incremental forming (SPIF) process with various spindle rotational speeds. The development of corrosion pits in 3.5 (%) NaCl solution has also been studied during SPIF process. Design/methodology/approach In this current research work, the void coalescence analysis and corrosion behaviour of titanium Grade 4 specimens were studied. A potentio-dynamic polarization (PDP) study was conducted to investigate the corrosion behaviour of titanium Grade 4 processed samples with various spindle speeds in 3.5 (%) NaCl solution. The scanning electron microscope and transmission electron microscope analysis was carried out to study the fracture behaviour and corrosion morphology of processed samples. Findings The titanium Grade 4 sheets obtained better formability and corrosion resistance by increasing the CNC spindle rotational speeds. In fact that, the significant plastic deformation affects the corrosion rate with various spindle speeds were recorded. Originality/value The spindle rotational speeds and vertical step depths increases then the titanium Grade 4 sheets showed better formability, void coalescence and corrosion behaviour as the same is evidenced in forming limit diagram and PDP curves.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xingyu Peng ◽  
Xinyue Liu

Purpose The purpose of this paper is to develop an equation for the synergistic corrosion of SRB and CO2 based on the D-W model. Design/methodology/approach The bacterial types in the a and ß pipelines were studied by the most probable number method, and the corrosion morphology of L360 in pipeline water samples was studied by surface analysis. The corrosion rate of L360 was studied using the weight loss method. The gray correlation method was used to calculate the degree of correlation between the influencing factors of corrosion under the synergistic effect of CO2 and SRB. The curve obtained from PIPESIM software and experiments data was then fitted using multiple non-linear regression method by MATLAB software. Findings The equation was used to predict the corrosion of the ß pipeline for verification, and it was found that seven out of ten excavation sites were within a 20% error range. Originality/value Using the gray correlation method, an equation that considers synergistic corrosion of SRB and CO2 has been developed based on the D-W model. The equation could be used to predict the corrosion rate of shale gas gathering pipelines through SRB and CO2 synergistic corrosion.


2021 ◽  
Vol 68 (5) ◽  
pp. 438-448
Author(s):  
Haoping Peng ◽  
Zhaolin Luan ◽  
Jun Liu ◽  
Yun Lei ◽  
Junxiu Chen ◽  
...  

Purpose This paper aims to under the laboratory environment, the corrosion behavior of X80 pipeline steel in oilfield injection water in eastern China was studied by immersion test. Design/methodology/approach First, the corrosion product film was immersed in oilfield injection water and the effect on the corrosion behavior and the corrosion reaction mechanism were constantly observed during this period. The effect was displayed by potentiodynamic polarization curve and electrochemical impedance spectrums (EIS) measurements. Second, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction were used to observe and test the corrosion product film immersed in the oilfield water for 30 days. Findings The results indicate that the tendency of metal corrosion becomes weaker at an early stage, but strengthened later, which means the corrosion rate is accelerating. Besides, it is indicated by impedance spectroscopy that with the decreasing of the capacitance arc radius, the reaction resistance is reducing in this progress. Meanwhile, the character of Warburg impedance could be found in EIS, which means that the erosional components are more likely to penetrate the product film to reach the matrix. The corrosion product is mainly composed of the inner Fe3O4 layer and outer shell layer, which contains a large number of calcium carbonate granular deposits. It is this corrosion under fouling that produces severe localized corrosion, forming many etch pits on the metal substrate. Originality/value The experiment chose the X80 steel, the highest-grade pipeline steel used in China, to conduct the static immersion test in the injection water coming from an oilfield in eastern China. Accordingly, the corrosion mechanism and the effect of corrosion product film on the corrosion of pipeline steel were analyzed and discussed.


Sign in / Sign up

Export Citation Format

Share Document