Corrosion behavior of 2205 duplex stainless steel in acidizing stimulation solution for oil and gas wells at 200°C

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Juan Du ◽  
Mengyao Yu ◽  
Pingli Liu ◽  
Yongqiang Fu ◽  
Gang Xiong ◽  
...  

Purpose This paper aims to analyze the high temperature (200°C) corrosion behavior of 2205 duplex stainless steel in acidizing stimulation solution containing hydrochloric acid (HCl) and acetic acid. Design/methodology/approach The corrosion rate of 2205 duplex stainless steel in all kinds of acid solutions was calculated through immersion tests and electrochemical test. The corrosion product composition is analyzed by X-ray diffraction analysis. The element composition and element distribution before and after corrosion were analyzed by an X-ray energy spectrometer. The corrosion morphology of the steel surface was observed by a scanning electron microscope. Both static and dynamic corrosion experiments were carried out at 200°C. Findings The results show that 2205 duplex stainless steel has excellent corrosion resistance in low to high concentration acetic acid solutions, but increasing the concentration of Cl− in acetic acid solution will accelerate the corrosion rate. Low concentration HCl solution can cause serious corrosion to 2205 duplex stainless steel. The system of HCl and acetic acid will produce a synergistic effect on corrosion of 2205 duplex stainless steel and accelerate the corrosion. Sb2O3 is a good corrosion inhibitor synergist for high-temperature acidizing stimulation solution. Originality/value The amount of HCl that is used in acidizing stimulation is usually determined by the dissolution effect of the acid on the rocks, but for ultra-high-temperature reservoirs, the amount of HCl should be based on reducing the corrosion of oil and gas wells.

2015 ◽  
Vol 62 (3) ◽  
pp. 163-171 ◽  
Author(s):  
Yinhui Yang ◽  
Biao Yan

Purpose – The aim of this paper was to investigate the effect of strain rate on microstructure and corrosion behavior of 2205 duplex stainless steel, after high-temperature compression tests. Design/methodology/approach – The specimens were prepared using a Gleeble3800 thermo-simulation machine over a range of temperatures from 850 to 1,250°C and strain rates from 0.005 to 5 s−1, and the corresponding flow curves and deformation microstructure obtained were further analyzed. To evaluate the effect of strain rate on corrosion behavior, potentiodynamic polarization tests and double-loop electrochemical potentiodynamic reactivation (DL-EPR) were used to characterize the electrochemical performance. Findings – Compared with strain rate of 0.5 s−1, the worst corrosion resistance behavior from the potentiodynamic polarization test results after deformation at 0.005 s−1 was attributed to more austenite (γ) and ferrite (δ) grain boundaries or δ/γ phase interface formation due to the better effect of γ dynamic recrystallization (DRX) or δ dynamic recovery (DRV). Increasing strain rate to 5 s−1 lowered the corrosion resistance, due to the increase in dislocation density. At the low strain rate of 0.005 s−1, the susceptibility to intergranular corrosion (IGC) was comparatively high after deformation at 1050 and 1150°C with more γ/γ grains and δ/γ phase boundary formation, which was lowered with the strain rate increase to 0.5 s−1, due to suppressing effect of γ DRX. Originality/value – The paper provides the scientific basis for the practical application of hot working of 2205 duplex stainless steel.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chuanbo Zheng ◽  
Cheng Zhang ◽  
Xiao Yong Wang ◽  
Jie Gu

Purpose Duplex stainless steel is composed of equal amounts of austenite and ferrite, which has excellent corrosion resistance and strength. However, after the metal was welded, the ratio of austenite and ferrite in the joint is unbalanced, and secondary phase precipitates are produced, which is also an important cause of pitting corrosion in the joint. Design/methodology/approach This paper aims to study the mechanical and corrosion behavior of welded joints, by adjusting the welding parameters of laser hybrid welding, dual heat sources are used to weld 2205 duplex stainless steel. The two-phase content of different parts of the welded joint is measured to study the influence of the ratio of the two-phase on the mechanical and corrosion properties of the joint. Findings The ratio of austenite and ferrite in different welded joints has an obvious difference, and from top to bottom, the austenite content decreased gradually, and the ferrite content increased gradually. The harmful phases are precipitated in the middle and lower part of the joint. The strength of welded joints is slightly lower than that of base metal. At the same time, the fracture analysis shows that some ferrite phases are affected by the precipitate in the grain and produce quasi-cleavage fracture. The corrosion results show that the corrosion resistance of the welded joints is lower than that of the base metal, and the concentration of chloride ions affects the corrosion resistance. Originality/value In this paper, the authors use the influence of different welding processes on the two-phase ratio of the joint to further study the influence of the microstructure on the corrosion resistance and mechanical properties of the weld.


2020 ◽  
Vol 67 (3) ◽  
pp. 313-320 ◽  
Author(s):  
Chuanbo Zheng ◽  
Jiayan Huang ◽  
Gua Yi

Purpose This paper aims to study the effect of current density of hydrogen charging on the semiconductor properties and pitting initiation of 2205 duplex stainless steel (DSS) passivation film. Design/methodology/approach In this work, the 2205 DSS is pre-hydrogenated and passivated. Then, the passivation film is tested by electrochemical impedance method, Mott–Schottky curve method and dynamic potential scanning method. The influences of hydrogen on the properties of the passivation film and the corrosion behavior of the matrix were studied by analyzing the curves obtained in the electrochemical test. The surface of the passivation film after pre-hydrogenation and anodic polarization was observed by using the ultra-depth three-dimensional microscopy and the scanning electron microscope. The integrity, density and corrosion morphology of the passivation film were studied and discussed. Findings With the increase of the hydrogen current density, the growth of the passivation film is hindered, the concentrations of donor and acceptor in the film are increased, the conductivity of the passivation film increases. In the anodic polarization, the dimensional passive current density increases with the increase of the hydrogen current density, and the pitting potential is reversed, the more likely the sample is pitting. In general, hydrogen hinders the formation of the passive film on duplex stainless steel, which increases the concentration of point defects in the passive film. Finally, the passive film is easy to crack and pitting. Originality/value The performance of passive film is an important condition to influence the corrosion behavior of stainless steel. However, little research has been done on the effects of hydrogen on the electrochemistry and pitting sensitivity of 2205 DSS passivation films. The effect of hydrogen on semiconductor properties and pitting initiation of 2205 DSS passivation film is needed to be investigated.


2020 ◽  
Vol 72 (9) ◽  
pp. 1117-1122 ◽  
Author(s):  
Yamid Núñez ◽  
Marcio Mafra ◽  
Rigoberto E. Morales ◽  
Paulo César Borges ◽  
Giuseppe Pintaude

Purpose This study aims to assess the performance of SAF 2205 duplex stainless steel against pure wear, tribo-corrosion, corrosion and the synergism between wear and corrosion. The effect of plasma nitriding conducted at low temperature (380°C) on SAF 2205 steel was analyzed. Design/methodology/approach Three systems were used for assessing the synergism between wear and corrosion: tribo-corrosion – wear tests conducted using the micro-scale abrasion test, performed under a slurry of alumina particles containing 3.5% NaCl; pure wear – tests conducted using the previous system but isolated in a glovebox with a 99% N2 atmosphere; and cyclic polarization under 3.5% NaCl solution. A hard nitrided layer of 3 µm thickness was characterized using X-ray diffraction, presenting expanded austenite. Findings The wear mode after micro-scale abrasion tests changed in the absence of an oxygen atmosphere. During pure wear, a mixed mode was identified (rolling + grooving), with the grooving mode more intense for the untreated steel. For tribo-corrosion tests, only rolling wear was identified. For all cases, the nitrided samples presented less wear. The corrosion results indicated a higher repassivation potential for the nitrided condition. Practical implications The synergism was more positive for the nitrided sample than for the untreated one, which can be considered for surface treatments of duplex stainless steels in practical applications. Originality/value A detailed description of wear mechanisms showed a significant change in the presence of oxygen atmosphere, a new approach for isolating pure wear.


Sign in / Sign up

Export Citation Format

Share Document