Predicting the response and perforation of fibre metal laminates subjected to projectile impact

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Y.J. Liu ◽  
Z.H. Wang ◽  
H.M. Wen

Purpose The purpose of this paper is to predict the response and perforation of fibre metal laminates (FMLs) subjected to impact by projectiles at different velocities. Design/methodology/approach A finite element (FE) model is constructed in which recently proposed dynamic constitutive models for fibre reinforced plastic (FRP) laminates and metals are used. Moreover, a recently developed dynamic cohesive element constitutive model is also used to simulate the debonding between FRP laminates and metal sheets. The FE model is first validated against the test data for glass laminate aluminum reinforced epoxy (GLARE) both under dropped object loading and ballistic impact, then used to perform a parametric study on the influence of projectile nose shape on the perforation of FMLs. Findings It is found that the present model predicts well the response and perforation of GLARE subjected to impact loading in terms of load-time history, load-displacement curve, residual velocity and failure pattern. It is also found that projectile nose shape has a considerable effect on the perforation of GLARE FMLs and that the ballistic limit is the highest for a flat-ended projectile whilst for a conical-nosed missile the resistance to perforation is the least. Originality/value Recently developed constitutive models for FRPs and metals, together with cohesive element model which considers strain rate effect, are used in the FE model to predict the behaviour of FMLs struck by projectiles in a wider range of impact velocities; the present model is advantageous over such existing models as Johnson-Cook (JC) + Chang-Chang and JC (+BW) + MAT162 in terms of failure pattern though they produce similar results for residual velocity.

2021 ◽  
Author(s):  
Peter P. Krimbalis

The development of Fibre Metal Laminates (FMLs) for application into aerospace structures represents a paradigm shift in airframe and material technology. By consolidating both monlithic metallic alloys and fibre reinforced composite layers, a new material structure is born exhibiting desired qualities emerging from its heterogeneous consituency. When mechanically fastened via pins, bolts and rivets, these laminated materials develop damage and ultimately fail via mechanisms that were not entirely understood and different than either their metallic or composite constituents. The development of a predictive methodology capable of characterizing how FMLs fastened with pins behave and fail would drastically reduce the amount of experimentation necessary for material qualification and be an invaluable design tool. The body of this thesis discusses the extension of the characteristic dimension approach to FMLS and the subsequent development of a new failure mechanism as part of a progressive damage infinte element (FE) modeling methodology with yielding, delamination and buckling representing the central tenets of the new mechanism. This yielding through delamination buckling (YDB) mechanism and progressive FE model were investigated through multiple experimental studies. The experimental investigations required the development of a protocol with emphasis on measuring deformation on a local scheme in addition to a global one. With the extended protocol employed, complete characterization of the material response was possbile and a new definition for yield in a pin bearing configuration was developed and subsequently extended to a tensile testing configuraiton. The performance of this yield definition was compared directly to existing definitions and was shown to be effective in both quasi-isotropic and orthotropic materials. The results of the experiments and FE simulations demonstrated that yielding (according to the new definition), buckling and delamination resulting in joint collapse and failure have all occurred within the stipulated predictions of the YDB mechanism.


2021 ◽  
Author(s):  
Peter P. Krimbalis

The development of Fibre Metal Laminates (FMLs) for application into aerospace structures represents a paradigm shift in airframe and material technology. By consolidating both monlithic metallic alloys and fibre reinforced composite layers, a new material structure is born exhibiting desired qualities emerging from its heterogeneous consituency. When mechanically fastened via pins, bolts and rivets, these laminated materials develop damage and ultimately fail via mechanisms that were not entirely understood and different than either their metallic or composite constituents. The development of a predictive methodology capable of characterizing how FMLs fastened with pins behave and fail would drastically reduce the amount of experimentation necessary for material qualification and be an invaluable design tool. The body of this thesis discusses the extension of the characteristic dimension approach to FMLS and the subsequent development of a new failure mechanism as part of a progressive damage infinte element (FE) modeling methodology with yielding, delamination and buckling representing the central tenets of the new mechanism. This yielding through delamination buckling (YDB) mechanism and progressive FE model were investigated through multiple experimental studies. The experimental investigations required the development of a protocol with emphasis on measuring deformation on a local scheme in addition to a global one. With the extended protocol employed, complete characterization of the material response was possbile and a new definition for yield in a pin bearing configuration was developed and subsequently extended to a tensile testing configuraiton. The performance of this yield definition was compared directly to existing definitions and was shown to be effective in both quasi-isotropic and orthotropic materials. The results of the experiments and FE simulations demonstrated that yielding (according to the new definition), buckling and delamination resulting in joint collapse and failure have all occurred within the stipulated predictions of the YDB mechanism.


2018 ◽  
Vol 90 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Krzysztof Majerski ◽  
Barbara Surowska ◽  
Jaroslaw Bienias ◽  
Jaroslaw Szusta

Purpose The purpose of this study is to investigate the results of reinforcing fibre metal laminates with glass fibres under low-cycle fatigue conditions in a limited number of cycles. Design/methodology/approach The tests were carried out on open-hole rectangular specimens loaded in tension-tension at high load ranges of 80 and 85 per cent of maximum force determined in static test, correspondingly. The number of cycles for destruction has been determined experimentally. Findings By means of microscopic observations, it was possible to determine the moment of crack initiation and their growth rate. Furthermore, it was possible to identify the impact of reinforcing fibre orientation in composite layers, material creating the metal layers, on fatigue life and on nature of crack propagation. Practical implications This work validates the possibility of increasing the resistance of fibre metal laminates to low-cycle fatigue by modifying the structure of the laminate. Originality/value The resistance of fibre metal laminates on low-cycle fatigue is not widely described and the phenomena occurring during degradation are poorly understood.


2021 ◽  
Vol 64 ◽  
pp. 996-1012
Author(s):  
Khaled Giasin ◽  
Alisha Dad ◽  
Emmanuel Brousseau ◽  
Danil Pimenov ◽  
Mozammel Mia ◽  
...  

2014 ◽  
Vol 24 (7) ◽  
pp. 1553-1569 ◽  
Author(s):  
H.G. Rábade ◽  
P. Vellando ◽  
F. Padilla ◽  
R. Juncosa

Purpose – A new coupled finite element model has been developed for the joint resolution of both the shallow water equations, that governs the free surface flow, and the groundwater flow equation that governs the motion of water through a porous media. The paper aims to discuss these issues. Design/methodology/approach – The model is based upon two different modules (surface and ground water) previously developed by the authors, that have been validated separately. Findings – The newly developed software allows for the assessment of the fluid flow in natural watersheds taking into account both the surface and the underground flow in the way it really takes place in nature. Originality/value – The main achievement of this work has dealt with the coupling of both models, allowing for a proper moving interface treatment that simulates the actual interaction that takes place between surface and groundwater in natural watersheds.


2010 ◽  
Author(s):  
Z. W. Guan ◽  
W. J. Cantwell ◽  
Jane W. Z. Lu ◽  
Andrew Y. T. Leung ◽  
Vai Pan Iu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document