Predicting Customer Churn at QWE Inc.

Author(s):  
Anton S. Ovchinnikov

This case exposes students to predictive analytics as applied to discrete events with logistic regression. The VP of customer services for a successful start-up wants to proactively identify customers most likely to cancel services or “churn.” He assigns the task to one of his associates and provides him with data on customer behavior and his intuition about what drives churn. The associate must generate a list of the customers most likely to churn and the top three reasons for that likelihood.

Author(s):  
Edson Kambeu

A logistic regression model is has also become a popular model because of its ability to predict, classify and draw relationships between a dichotomous dependent variable and dependent variables. On the other hand, the R programming language has become a popular language for building and implementing predictive analytics models. In this paper, we apply a logistic regression model in the R environment in order to examine whether daily trading volume at the Botswana Stock Exchange influence daily stock market movement. Specifically, we use a logistic regression model to find the relationship between daily stock movement and the trading volumes experienced in the recent five previous trading days. Our results show that only the trading volume for the third previous day influence current stock market index movement. Overall, trading volumes of the past five days were found not have an impact on today’s stock market movement. The results can be used as a basis for building a predictive model that utilizes trading as a predictor of stock market movement.


Author(s):  
Fauzan Anggi Prasatya ◽  
Tjahja Muhandri ◽  
Eko Ruddy Cahyadi

The competition of food business is currently very strict and diverse product innovations. To achieve the market share and win the business competition needs to know the affecting success factors. This study has two main objectives that include the following to: (1) mapping the characteristics of non traditional street food entrepreneur in Serang City, (2) identify the most affected success factor of non traditional street food business. Sampling method was used by purposive sampling 100 respondents. The analytical method used descriptive analysis and binary logistic regression. This research showed most of successful vendor are woman, because they are very conscientious than mens and tend to avoid risk. Affecting success factors on non traditional street food business were price of the product, business name and start up capital.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Brian Ayers ◽  
Toumas Sandhold ◽  
Igor Gosev ◽  
Sunil Prasad ◽  
Arman Kilic

Introduction: Prior risk models for predicting survival after orthotopic heart transplantation (OHT) have displayed only modest discriminatory capability. With increasing interest in the application of machine learning (ML) to predictive analytics in clinical medicine, this study aimed to evaluate whether modern ML techniques could improve risk prediction in OHT. Methods: Data from the United Network for Organ Sharing registry was collected for all adult patients that underwent OHT from 2000 through 2019. The primary outcome was one-year post-transplant mortality. Dimensionality reduction and data re-sampling were employed during training. The final ensemble model was created from 100 different models of each algorithm: deep neural network, logistic regression, adaboost, and random forest. Discriminatory capability was assessed using area under receiver-operating-characteristic curve (AUROC), net reclassification index (NRI), and decision curve analysis (DCA). Results: Of the 33,657 study patients, 26,926 (80%) were randomly selected for the training set and 6,731 (20%) as a separate testing set. One-year mortality was balanced between cohorts (11.0% vs 11.3%). The optimal model performance was a final ensemble ML model. This model demonstrated an improved AUROC of 0.764 (95% CI, 0.745-0.782) in the testing set as compared to the other models (Figure). Additionally, the final model demonstrated an improvement of 72.9% ±3.8% (p<0.001) in predictive performance as assessed by NRI compared to logistic regression. The DCA showed the final ensemble method improved risk prediction across the entire spectrum of predicted risk as compared to all other models (p<0.001). Conclusions: An ensemble ML model was able to achieve greater predictive performance as compared to individual ML models as well as logistic regression for predicting survival after OHT. This analysis demonstrates the promise of ML techniques in risk prediction in OHT.


Author(s):  
Sema A. Kalaian ◽  
Rafa M. Kasim

Predictive analytics and modeling are analytical tools for knowledge discovery through examining and capturing the complex relationships and patterns among the variables in the existing data in efforts to predict the future organizational performances. Their uses become more common place due largely to collecting massive amount of data, which is referred to as “big data,” and the increased need to transform large amounts of data into intelligent information (knowledge) such as trends, patterns, and relationships. The intelligent information can then be used to make smart and informed data-based decisions and predictions using various methods of predictive analytics. The main purpose of this chapter is to present a conceptual and practical overview of some of the basic and advanced analytical tools of predictive analytics. The chapter provides a detailed coverage of some of the predictive analytics tools such as Simple and Multiple-Regression, Polynomial Regression, Logistic Regression, Discriminant Analysis, and Multilevel Modeling.


2017 ◽  
pp. 49-66
Author(s):  
Sema A. Kalaian ◽  
Rafa M. Kasim

Predictive analytics and modeling are analytical tools for knowledge discovery through examining and capturing the complex relationships and patterns among the variables in the existing data in efforts to predict the future organizational performances. Their uses become more common place due largely to collecting massive amount of data, which is referred to as “big data,” and the increased need to transform large amounts of data into intelligent information (knowledge) such as trends, patterns, and relationships. The intelligent information can then be used to make smart and informed data-based decisions and predictions using various methods of predictive analytics. The main purpose of this chapter is to present a conceptual and practical overview of some of the basic and advanced analytical tools of predictive analytics. The chapter provides a detailed coverage of some of the predictive analytics tools such as Simple and Multiple-Regression, Polynomial Regression, Logistic Regression, Discriminant Analysis, and Multilevel Modeling.


Sign in / Sign up

Export Citation Format

Share Document