Mixed Eulerian‐Lagrangian finite element analysis of transient flow with a moving boundary

1990 ◽  
Vol 7 (1) ◽  
pp. 75-78 ◽  
Author(s):  
S.K.W. Tou
2010 ◽  
Vol 426-427 ◽  
pp. 151-155 ◽  
Author(s):  
Ming Di Wang ◽  
Shi Hong Shi ◽  
Dun Wen Zuo

For the disadvantages of the lateral powder feeding and multi-lateral coaxial powder feeding process in laser cladding rapid prototyping process, a new process of hollow focusing laser, powder tube being middle and inside-beam powder feeding is put forward, which can be especially apply in laser cladding. In this paper, the finite element analysis model of temperature of the laser cladding using inside-beam powder feeding is established, temperature distribution of the single-layer in laser cladding is researched, which is theoretically useful for controlling the quality of microstructure and to prevent the cracks. When adopting finite element analysis software, Ansys, the layer unit is acted layer-by-layer, the full simulation of real cladding deposition process will be realized if moving boundary. Finally, some experiments validate the simulation results. Compared with the original mode, it can be found that if adopting the system of the laser cladding rapid manufacturing using inside-beam powder feeding, the temperature distribution is different and it will lead to a denser microstructure.


1997 ◽  
Vol 64 (2) ◽  
pp. 263-269 ◽  
Author(s):  
Seokwoo Kang ◽  
Seyoung Im

A new iterative scheme is proposed for finite element analysis of wrinkling or tension structures. The scheme is based upon the observation that there exists an invariant relationship, due to the uniaxial tensile stress state of wrinkling, between some of the strain components referred to the local frame aligned with wrinkling in a region where wrinkling occurs. This enables us to update the stress state and the internal forces correctly taking into account the existence of wrinkling. The finite element implementation of the scheme is straightforward and simple, and only minor modifications of the existing total Lagrangian finite element codes for membranes are needed. The validity of the scheme is demonstrated via numerical examples for the torsion of a membrane and the quasi-static inflation of an automotive airbag, both made of isotropic or anisotropic elastic membranes. The examples suggest that the present iterative scheme has a good convergence characteristic even for a large loading step.


Author(s):  
Aron Wing ◽  
Tony Liu ◽  
Anthony Palazotto

The purpose of this work is to analyze the heat transfer characteristics of Vascomax®C300 during high-speed sliding. This work extends previous research that is intended to help predict the wear-rate of connecting shoes for a hypersonic rail system at Holloman Air Force Base to prevent critical failure of the system. Solutions were generated using finite element analysis and spectral methods. The frictional heat generated by the pin-on-disk is assumed to flow uniformly and normal to the face of the pin and the pin is assumed to be a perfect cylinder resulting in two-dimensional heat flow. Displacement data obtained from the experiment is used to define the moving boundary. The distribution of temperature resulting from transient finite element analysis is used to justify a one-dimensional model. Spectral methods are then employed to calculate the spatial derivatives improving the approximation of the function which represents the data. It is concluded that a one-dimensional approach with constant heat transfer parameters sufficiently models the high-speed pin-on-disk experiment.


2002 ◽  
Vol 16 (5) ◽  
pp. 683-695 ◽  
Author(s):  
Kyung Se Cha ◽  
Jong Wook Choi ◽  
Chan Guk Park

Sign in / Sign up

Export Citation Format

Share Document