scholarly journals Aspect ratio effects in Rayleigh–Bénard convection of Herschel–Bulkley fluids

2017 ◽  
Vol 34 (5) ◽  
pp. 1658-1676 ◽  
Author(s):  
Mohammad Saeid Aghighi ◽  
Amine Ammar

Purpose The purpose of this paper is to analyze two-dimensional steady-state Rayleigh–Bénard convection within rectangular enclosures in different aspect ratios filled with yield stress fluids obeying the Herschel–Bulkley model. Design/methodology/approach In this study, a numerical method based on the finite element has been developed for analyzing two-dimensional natural convection of a Herschel–Bulkley fluid. The effects of Bingham number Bn and power law index n on heat and momentum transport have been investigated for a nominal Rayleigh number range (5 × 103 < Ra < 105), three different aspect ratios (ratio of enclosure length:height AR = 1, 2, 3) and a single representative value of nominal Prandtl number (Pr = 10). Findings Results show that the mean Nusselt number Nu¯ increases with increasing Rayleigh number due to strengthening of convective transport. However, with the same nominal value of Ra, the values of Nu¯ for shear thinning fluids n < 1 are greater than shear thickening fluids n > 1. The values of Nu¯ decrease with Bingham number and for large values of Bn, Nu¯ rapidly approaches unity, which indicates that heat transfer takes place principally by thermal conduction. The effects of aspect ratios have also been investigated and results show that Nu¯ increases with increasing AR due to stronger convection effects. Originality/value This paper presents a numerical study of Rayleigh–Bérnard flows involving Herschel–Bulkley fluids for a wide range of Rayleigh numbers, Bingham numbers and power law index based on finite element method. The effects of aspect ratio on flow and heat transfer of Herschel–Bulkley fluids are also studied.

2012 ◽  
Vol 713 ◽  
pp. 216-242 ◽  
Author(s):  
Jun Hu ◽  
Daniel Henry ◽  
Xie-Yuan Yin ◽  
Hamda BenHadid

AbstractThree-dimensional Rayleigh–Bénard instabilities in binary fluids with Soret effect are studied by linear biglobal stability analysis. The fluid is confined transversally in a duct and a longitudinal throughflow may exist or not. A negative separation factor $\psi = \ensuremath{-} 0. 01$, giving rise to oscillatory transitions, has been considered. The numerical dispersion relation associated with this stability problem is obtained with a two-dimensional Chebyshev collocation method. Symmetry considerations are used in the analysis of the results, which allow the classification of the perturbation modes as ${S}_{l} $ modes (those which keep the left–right symmetry) or ${R}_{x} $ modes (those which keep the symmetry of rotation of $\lrm{\pi} $ about the longitudinal mid-axis). Without throughflow, four dominant pairs of travelling transverse modes with finite wavenumbers $k$ have been found. Each pair corresponds to two symmetry degenerate left and right travelling modes which have the same critical Rayleigh number ${\mathit{Ra}}_{c} $. With the increase of the duct aspect ratio $A$, the critical Rayleigh numbers for these four pairs of modes decrease and closely approach the critical value ${\mathit{Ra}}_{c} = 1743. 894$ obtained in a two-dimensional situation, one of the mode (a ${S}_{l} $ mode called mode A) always remaining the dominant mode. Oscillatory longitudinal instabilities ($k\approx 0$) corresponding to either ${S}_{l} $ or ${R}_{x} $ modes have also been found. Their critical curves, globally decreasing, present oscillatory variations when the duct aspect ratio $A$ is increased, associated with an increasing number of longitudinal rolls. When a throughflow is applied, the symmetry degeneracy of the pairs of travelling transverse modes is broken, giving distinct upstream and downstream modes. For small and moderate aspect ratios $A$, the overall critical Rayleigh number in the small Reynolds number range studied is only determined by the upstream transverse mode A. In contrast, for larger aspect ratios as $A= 7$, different modes are successively dominant as the Reynolds number is increased, involving both upstream and downstream transverse modes A and even the longitudinal mode.


A recent study by Cross et al . (1980) has described a class of finite-amplitude phase-winding solutions of the problem of two-dimensional Rayleigh-Bénard convection in a shallow fluid layer of aspect ratio 2 L (≫ 1) confined laterally by rigid side-walls. These solutions arise at Rayleigh numbers R = R 0 + O ( L -1 ) where R 0 is the critical Rayleigh number for the corresponding infinite layer. Nonlinear solutions of constant phase exist for Rayleigh numbers R = R 0 + O ( L -2 ) but of these only the two that bifurcate at the lowest value of R are stable to two-dimensional linearized disturbances in this range (Daniels 1978). In the present paper one set of the class of phase-winding solutions is found to be stable to two-dimensional disturbances. For certain values of the Prandtl number of the fluid and for stress-free horizontal boundaries the results predict that to preserve stability there must be a continual readjustment of the roll pattern as the Rayleigh number is raised, with a corresponding increase in wavelength proportional to R - R 0 . These solutions also exhibit hysteresis as the Rayleigh number is raised and lowered. For other values of the Prandtl number the number of rolls remains unchanged as the Rayleigh number is raised, and the wavelength remains close to its critical value. It is proposed that the complete evolution of the flow pattern from a static state must take place on a number of different time scales of which t = O(( R - R 0 ) -1 ) and t = O(( R - R 0 ) -2 ) are the most significant. When t = O(( R - R 0 ) -1 ) the amplitude of convection rises from zero to its steady-state value, but the final lateral positioning of the rolls is only completed on the much longer time scale t = O(( R - R 0 ) -2 ).


2002 ◽  
Vol 469 ◽  
pp. 1-12 ◽  
Author(s):  
A. S. FLEISCHER ◽  
R. J. GOLDSTEIN

High-pressure gases are used to study high-Rayleigh-number Rayleigh–Bénard convection in cylindrical horizontal enclosures. The Nusselt–Rayleigh heat transfer relationship is investigated for 1×109 < Ra < 1.7×1012. Schlieren video images of the flow field are recorded through optical viewports in the pressure vessel. The data set is well correlated by Nu = 0.071Ra0.328. The schlieren results confirm the existence of a large-scale flow that periodically interrupts the ascending and descending plumes. The intensity of both the plumes and the large-scale flow increases with Rayleigh number.


2015 ◽  
Vol 785 ◽  
pp. 270-282 ◽  
Author(s):  
L. Skrbek ◽  
P. Urban

An important question in turbulent Rayleigh–Bénard convection is the scaling of the Nusselt number with the Rayleigh number in the so-called ultimate state, corresponding to asymptotically high Rayleigh numbers. A related but separate question is whether the measurements support the so-called Kraichnan law, according to which the Nusselt number varies as the square root of the Rayleigh number (modulo a logarithmic factor). Although there have been claims that the Kraichnan regime has been observed in laboratory experiments with low aspect ratios, the totality of existing experimental results presents a conflicting picture in the high-Rayleigh-number regime. We analyse the experimental data to show that the claims on the ultimate state leave open an important consideration relating to non-Oberbeck–Boussinesq effects. Thus, the nature of scaling in the ultimate state of Rayleigh–Bénard convection remains open.


2021 ◽  
Vol 136 (1) ◽  
pp. 10003
Author(s):  
Lucas Méthivier ◽  
Romane Braun ◽  
Francesca Chillà ◽  
Julien Salort

Abstract We present measurements of the global heat transfer and the velocity field in two Rayleigh-Bénard cells (aspect ratios 1 and 2). We use Fluorinert FC770 as the working fluid, up to a Rayleigh number . The velocity field is inferred from sequences of shadowgraph pattern using a Correlation Image Velocimetry (CIV) algorithm. Indeed the large number of plumes, and their small characteristic scale, make it possible to use the shadowgraph pattern produced by the thermal plumes in the same manner as particles in Particle Image Velocimetry (PIV). The method is validated in water against PIV, and yields identical wind velocity estimates. The joint heat transfer and velocity measurements allow to compute the scaling of the kinetic dissipation rate which features a transition from a laminar scaling to a turbulent Re 3 scaling. We propose that the turbulent transition in Rayleigh-Bénard convection is controlled by a threshold Péclet number rather than a threshold Rayleigh number, which may explain the apparent discrepancy in the literature regarding the “ultimate” regime of convection.


2012 ◽  
Vol 710 ◽  
pp. 260-276 ◽  
Author(s):  
Quan Zhou ◽  
Bo-Fang Liu ◽  
Chun-Mei Li ◽  
Bao-Chang Zhong

AbstractWe report high-precision measurements of the Nusselt number $Nu$ as a function of the Rayleigh number $Ra$ in water-filled rectangular Rayleigh–Bénard convection cells. The horizontal length $L$ and width $W$ of the cells are 50.0 and 15.0 cm, respectively, and the heights $H= 49. 9$, 25.0, 12.5, 6.9, 3.5, and 2.4 cm, corresponding to the aspect ratios $({\Gamma }_{x} \equiv L/ H, {\Gamma }_{y} \equiv W/ H)= (1, 0. 3)$, $(2, 0. 6)$, $(4, 1. 2)$, $(7. 3, 2. 2)$, $(14. 3, 4. 3)$, and $(20. 8, 6. 3)$. The measurements were carried out over the Rayleigh number range $6\ensuremath{\times} 1{0}^{5} \lesssim Ra\lesssim 1{0}^{11} $ and the Prandtl number range $5. 2\lesssim Pr\lesssim 7$. Our results show that for rectangular geometry turbulent heat transport is independent of the cells’ aspect ratios and hence is insensitive to the nature and structures of the large-scale mean flows of the system. This is slightly different from the observations in cylindrical cells where $Nu$ is found to be in general a decreasing function of $\Gamma $, at least for $\Gamma = 1$ and larger. Such a difference is probably a manifestation of the finite plate conductivity effect. Corrections for the influence of the finite conductivity of the top and bottom plates are made to obtain the estimates of $N{u}_{\infty } $ for plates with perfect conductivity. The local scaling exponents ${\ensuremath{\beta} }_{l} $ of $N{u}_{\infty } \ensuremath{\sim} R{a}^{{\ensuremath{\beta} }_{l} } $ are calculated and found to increase from 0.243 at $Ra\simeq 9\ensuremath{\times} 1{0}^{5} $ to 0.327 at $Ra\simeq 4\ensuremath{\times} 1{0}^{10} $.


Sign in / Sign up

Export Citation Format

Share Document