Refined bond-based peridynamics for thermal diffusion

2019 ◽  
Vol 36 (8) ◽  
pp. 2557-2587 ◽  
Author(s):  
Xin Gu ◽  
Qing Zhang ◽  
Erdogan Madenci

Purpose This paper aims to review the existing bond-based peridynamic (PD) and state-based PD heat conduction models, and further propose a refined bond-based PD thermal conduction model by using the PD differential operator. Design/methodology/approach The general refined bond-based PD is established by replacing the local spatial derivatives in the classical heat conduction equations with their corresponding nonlocal integral forms obtained by the PD differential operator. This modeling approach is representative of the state-based PD models, whereas the resulting governing equations appear as the bond-based PD models. Findings The refined model can be reduced to the existing bond-based PD heat conduction models by specifying particular influence functions. Also, the refined model does not require any calibration procedure unlike the bond-based PD. A systematic explicit dynamic solver is introduced to validate 1 D, 2 D and 3 D heat conduction in domains with and without a crack subjected to a combination of Dirichlet, Neumann and convection boundary conditions. All of the PD predictions are in excellent agreement with the classical solutions and demonstrate the nonlocal feature and advantage of PD in dealing with heat conduction in discontinuous domains. Originality/value The existing PD heat conduction models are reviewed. A refined bond-based PD thermal conduction model by using PD differential operator is proposed and 3 D thermal conduction in intact or cracked structures is simulated.

Author(s):  
Mohammed Q. Al‐Odat

PurposeIn this study, the purpose was to introduce two‐dimensional hyperbolic heat conduction equations in order to simulate the fast precooling process of a cylindrically shaped food product with internal heat generation. A modified model for internal heat generation due to respiration in the food product was proposed to take the effect of relaxation time into account. The obtained governing equations were solved numerically using an efficient finite difference technique. The influence of Biot number and heat generation parameters on thermal characteristics was examined and discussed. The results based on hyperbolic model were compared with the classical parabolic heat diffusion model. The present numerical code was validated via comparison with analytical solution and a good agreement was found.Design/methodology/approachThe obtained governing equations were solved numerically using an efficient finite difference technique.FindingsThe influence of Biot number and heat generation parameters on thermal characteristics was examined and discussed. The results based on hyperbolic model were compared with the classical parabolic heat diffusion model. The present numerical code was validated via comparison with analytical solution and a good agreement was found.Originality/valueTwo‐dimensional analysis of fast precooling of cylindrical food product based on hyperbolic heat conduction model has not been investigated yet.


2004 ◽  
Vol 471-472 ◽  
pp. 784-789 ◽  
Author(s):  
Zhen Long Wang ◽  
Jing Zhi Cui ◽  
X.F. Liu ◽  
Wan Sheng Zhao

In electric discharge manufacturing, especially to the complex part finishing machining, electrode wear effects the electrode’s life-span and the work pieces precision in both dimension and geometry. Although it is more difficult to explain the exact mechanism of metal erosion in sparking, the basic phenomenon that the work materials near the channels melted, vaporized, and then flushed off in the dielectric liquid has suggested that the mechanism of electrode wear is based on a thermal conduction process governed by heat generating from arc channels and dissipating into the tool and the work. On the basis of a review of the other researchers’ work and analysis to the thermal conduction phenomenon, this paper presents an electrode wear model based on heat conduction. Finite element is employed to solve the heat conduction model of wear, and in addition, a theoretic planar sunken function at electrode surface impacted by plasma flow is established. Some experiments and simulations are made to verify the hypothetic model, and the conclusions that the simulation result of erosion figure and erosion trend of the material are correspond to the hypothetic model are confirmed.


2016 ◽  
Vol 63 (1) ◽  
pp. 129-144
Author(s):  
Mohammad Javad Noroozi ◽  
Seyfolah Saedodin ◽  
Davood Domiri Ganji

Abstract The effect of laser, as a heat source, on a one-dimensional finite body was studied in this paper. The Cattaneo-Vernotte non-Fourier heat conduction model was used for thermal analysis. The thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The obtained equations were solved using the approximate-analytical Adomian Decomposition Method (ADM). It was concluded that the non-linear analysis is important in non-Fourier heat conduction problems. Significant differences were observed between the Fourier and non-Fourier solutions which stresses the importance of non-Fourier solutions in the similar problems.


2005 ◽  
Vol 127 (12) ◽  
pp. 1400-1402 ◽  
Author(s):  
Y. Sungtaek Ju

Controlled heating of nanoparticles is a key enabling technology for various nanomanufacturing and biomedical applications. A theoretical study of energy transport in nanoparticles is conducted to elucidate the role of electron-phonon spatial nonequilibrium in heat conduction across metal-dielectric interfaces. The continuum two-temperature heat conduction model is shown to capture the apparent size dependence of the thermal interface resistance of Au nanoparticle suspensions. Consideration of coupling between electrons and atomic vibrations is important in understanding energy transport in nanoscale metallic structures suspended in a dielectric medium.


2010 ◽  
Vol 1 (4) ◽  
pp. 344-357 ◽  
Author(s):  
V. Richter‐Trummer ◽  
P.M.G.P. Moreira ◽  
S.D. Pastrama ◽  
M.A.P. Vaz ◽  
P.M.S.T. de Castro

PurposeThe purpose of this paper is to develop a methodology for in situ stress intensity factor (SIF) determination that can be used for the analysis of cracked structures. The technique is based on digital image correlation (DIC) combined with an overdetermined algorithm.Design/methodology/approachThe linear overdeterministic algorithm for calculating the SIF based on stress values around the crack tip is applied to a strain field obtained by DIC.FindingsAs long as the image quality is sufficiently high, a good accuracy can be obtained for the measured SIF. The crack tip can be automatically detected based on the same strain field. The use of the strain field instead of the displacement field, eliminates problems related to the rigid body motion of the analysed structure.Practical implicationsIn future works, based on the applied techniques, the SIF of complex cracked plane stress structures can be accurately determined in real engineering applications.Originality/valueThe paper demonstrates application of known techniques, refined for other applications, also the use of stress field for SIF overdeterministic calculations.


Sign in / Sign up

Export Citation Format

Share Document