Aerodynamic ground effects on DLRF6 vehicle

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mojtaba Tahani ◽  
Mehran Masdari ◽  
Ali Bargestan

Purpose The overall performance of an aerial vehicle strongly depends on the specifics of the propulsion system and its position relative to the other components. The purpose of paper is this factor can be characterized by changing several contributing parameters, such as distance from the ground, fuselage and wing as well as the nacelle outlet velocity and analyzing the aerodynamic performance. Design/methodology/approach Navier–Stokes equations are discretized in space using finite volume method. A KW-SST model is implemented to model the turbulence. The flow is assumed steady, single-phase, viscous, Newtonian and compressible. Accordingly, after validation and verification against experimental and numerical results of DLRF6 configuration, the location of the propulsion system relative to configuration body is examined. Findings At the nacelle outlet velocity of V/Vinf = 4, the optimal location identified in this study delivers 16% larger lift to drag ratio compared to the baseline configuration. Practical implications Altering the position of the propulsion system along the longitudinal direction does not have a noticeable effect on the vehicle performance. Originality/value Aerial vehicles including wing-in-ground effect vehicles require thrust to fly. Generating this necessary thrust for motion and acceleration is thoroughly affected by the vehicle aerodynamics. There is a lack of rigorous understanding of such topics owing to the immaturity of science in this area. Complexity and diversity of performance variables for a numerical solution and finding a logical connection between these parameters are among the related challenges.

Author(s):  
Younes Menni ◽  
Ahmed Azzi ◽  
A. Chamkha

Purpose This paper aims to report the results of numerical analysis of turbulent fluid flow and forced-convection heat transfer in solar air channels with baffle-type attachments of various shapes. The effect of reconfiguring baffle geometry on the local and average heat transfer coefficients and pressure drop measurements in the whole domain investigated at constant surface temperature condition along the top and bottom channels’ walls is studied by comparing 15 forms of the baffle, which are simple (flat rectangular), triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, double V (or W), Z, T, G and epsilon (or e)-shaped, with the Reynolds number changing from 12,000 to 32,000. Design/methodology/approach The baffled channel flow model is controlled by the Reynolds-averaged Navier–Stokes equations, besides the k-epsilon (or k-e) turbulence model and the energy equation. The finite volume method, by means of commercial computational fluid dynamics software FLUENT is used in this research work. Findings Over the range investigated, the Z-shaped baffle gives a higher thermal enhancement factor than with simple, triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, W, T, G and e-shaped baffles by about 3.569-20.809; 3.696-20.127; 3.916-20.498; 1.834-12.154; 1.758-12.107; 7.272-23.333; 6.509-22.965; 8.917-26.463; 8.257-23.759; 5.513-18.960; 8.331-27.016; 7.520-26.592; 6.452-24.324; and 0.637-17.139 per cent, respectively. Thus, the baffle of Z-geometry is considered as the best modern model of obstacles to significantly improve the dynamic and thermal performance of the turbulent airflow within the solar channel. Originality/value This analysis reports an interesting strategy to enhance thermal transfer in solar air channels by use of attachments with various shapes


2018 ◽  
Vol 28 (9) ◽  
pp. 2189-2207 ◽  
Author(s):  
Erman Ulker ◽  
Sıla Ovgu Korkut ◽  
Mehmet Sorgun

Purpose The purpose of this paper is to solve Navier–Stokes equations including the effects of temperature and inner pipe rotation for fully developed turbulent flow in eccentric annuli by using finite difference scheme with fixing non-linear terms. Design/methodology/approach A mathematical model is proposed for fully developed turbulent flow including the effects of temperature and inner pipe rotation in eccentric annuli. Obtained equation is solved numerically via central difference approximation. In this process, the non-linear term is frozen. In so doing, the non-linear equation can be considered as a linear one. Findings The convergence analysis is studied before using the method to the proposed momentum equation. It reflects that the method approaches to the exact solution of the equation. The numerical solution of the mathematical model shows that pressure gradient can be predicted with a good accuracy when it is compared with experimental data collected from experiments conducted at Izmir Katip Celebi University Flow Loop. Originality/value The originality of this work is that Navier–Stokes equations including temperature and inner pipe rotation effects for fully developed turbulent flow in eccentric annuli are solved numerically by a finite difference method with frozen non-linear terms.


2017 ◽  
Vol 27 (8) ◽  
pp. 1675-1686 ◽  
Author(s):  
Guangzhi Du ◽  
Liyun Zuo

Purpose The purpose of this paper is to propose a parallel partition of unity method (PPUM) to solve the nonstationary Navier-Stokes equations. Design/methodology/approach This paper opted for the nonstationary Navier-Stokes equations by using the finite element method and the partition of unity method. Findings This paper provides one efficient parallel algorithm which reaches the same accuracy as the standard Galerkin method but saves a lot of computational time. Originality/value In this paper, a PPUM is proposed for nonstationary Navier-Stokes. At each time step, the authors only need to solve a series of independent local sub-problems in parallel instead of one global problem.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1240-1271 ◽  
Author(s):  
Camilo Andrés Bayona Roa ◽  
Joan Baiges ◽  
R Codina

Purpose – The purpose of this paper is to apply the variational multi-scale framework to the finite element approximation of the compressible Navier-Stokes equations written in conservation form. Even though this formulation is relatively well known, some particular features that have been applied with great success in other flow problems are incorporated. Design/methodology/approach – The orthogonal subgrid scales, the non-linear tracking of these subscales, and their time evolution are applied. Moreover, a systematic way to design the matrix of algorithmic parameters from the perspective of a Fourier analysis is given, and the adjoint of the non-linear operator including the volumetric part of the convective term is defined. Because the subgrid stabilization method works in the streamline direction, an anisotropic shock capturing method that keeps the diffusion unaltered in the direction of the streamlines, but modifies the crosswind diffusion is implemented. The artificial shock capturing diffusivity is calculated by using the orthogonal projection onto the finite element space of the gradient of the solution, instead of the common residual definition. Temporal derivatives are integrated in an explicit fashion. Findings – Subsonic and supersonic numerical experiments show that including the orthogonal, dynamic, and the non-linear subscales improve the accuracy of the compressible formulation. The non-linearity introduced by the anisotropic shock capturing method has less effect in the convergence behavior to the steady state. Originality/value – A complete investigation of the stabilized formulation of the compressible problem is addressed.


2006 ◽  
Vol 128 (6) ◽  
pp. 1172-1180 ◽  
Author(s):  
Stephen Mahon ◽  
Xin Zhang

The flow around an inverted double-element airfoil in ground effect was studied numerically, by solving the Reynolds averaged Navier-Stokes equations. The predictive capabilities of six turbulence models with regards to the surface pressures, wake flow field, and sectional forces were quantified. The realizable k−ε model was found to offer improved predictions of the surface pressures and wake flow field. A number of ride heights were investigated, covering various force regions. The surface pressures, sectional forces, and wake flow field were all modeled accurately and offered improvements over previous numerical investigations. The sectional forces indicated that the main element generated the majority of the downforce, whereas the flap generated the majority of the drag. The near field and far field wake development was investigated and suggestions concerning reduction of the wake thickness were offered. The main element wake was found to greatly contribute to the overall wake thickness with the contribution increasing as the ride height decreased.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vishal Raul ◽  
Leifur Leifsson

PurposeThe purpose of this work is to investigate the similarity requirements for the application of multifidelity modeling (MFM) for the prediction of airfoil dynamic stall using computational fluid dynamics (CFD) simulations.Design/methodology/approachDynamic stall is modeled using the unsteady Reynolds-averaged Navier–Stokes equations and Menter's shear stress transport turbulence model. Multifidelity models are created by varying the spatial and temporal discretizations. The effectiveness of the MFM method depends on the similarity between the high- (HF) and low-fidelity (LF) models. Their similarity is tested by computing the prediction error with respect to the HF model evaluations. The proposed approach is demonstrated on three airfoil shapes under deep dynamic stall at a Mach number 0.1 and Reynolds number 135,000.FindingsThe results show that varying the trust-region (TR) radius (λ) significantly affects the prediction accuracy of the MFM. The HF and LF simulation models hold similarity within small (λ ≤ 0.12) to medium (0.12 ≤ λ ≤ 0.23) TR radii producing a prediction error less than 5%, whereas for large TR radii (0.23 ≤ λ ≤ 0.41), the similarity is strongly affected by the time discretization and minimally by the spatial discretization.Originality/valueThe findings of this work present new knowledge for the construction of accurate MFMs for dynamic stall performance prediction using LF model spatial- and temporal discretization setup and the TR radius size. The approach used in this work is general and can be used for other unsteady applications involving CFD-based MFM and optimization.


Author(s):  
Alex E. Ockfen ◽  
Konstantin I. Matveev

Experimental design and optimization of innovative ground-effect transportation means is an iterative process which requires a large amount of time and resources. To avoid the large experimental expense, numerical modeling can be used to investigate Wing-in-Ground (WIG) vehicle flight. In this paper, modeling technique is applied for a two dimensional NACA 4412 airfoil in viscous flow in and out of ground effect. The numerical method consists of a steady state, incompressible, finite volume method utilizing the Spalart-Allmaras turbulence model. Grid generation and solution of the Navier-Stokes equations are completed using FLUENT 6.3. The modeling procedures are first validated against published experimental data for unbounded flow around an airfoil. Wing section aerodynamic characteristics are then studied for varying ground heights and two separate boundary conditions: fixed ground and moving ground. Ground effect calculations are compared to several previous studies, and our results are found to correlate with published aerodynamic trends in ground effect, although all studies appear to predict different magnitudes of aerodynamic forces.


2019 ◽  
Vol 91 (6) ◽  
pp. 807-813
Author(s):  
Yanina Berdnik ◽  
Alexey Beskopylny

Purpose The paper aims to obtain an effective solution to the problem on a flow of viscous fluid around a thin plate using a new approximation method based on the exact Navier–Stokes equations. Also, correction factors are proposed to improve the obtained solution at high Reynolds numbers. Design/methodology/approach The paper has opted for a method that is based on an approximation scheme for certain perturbations concerning the velocity of the oncoming unperturbed flow behind a leading edge of the plate as a zero approximation step. The perturbations are assumed to be small, far from the plate when compared to the basic flow to justify the linearization. Numerical methods are used for the integral equations at each approximation step. Findings This paper provides the friction force coefficient compared with the classical Blasius solution and the ANSYS results. Also, some diagrams of the velocity distribution in the flow are presented. The first and second approximation steps provide a sufficiently high degree of accuracy. Research limitations/implications Because of the chosen research approach, the results may lack accuracy for low and average Reynolds numbers. Thus, researchers are encouraged to improve the proposed method further. Practical implications The paper includes implications for the development of an aircraft design or a wind turbine design considering a wing as a thin plate at the first approximation. Originality/value This paper provides a new approximation method based on the exact Navier–Stokes equations, in contrast to the known solutions.


1997 ◽  
Vol 119 (3) ◽  
pp. 512-518 ◽  
Author(s):  
Robert R. Hwang ◽  
Chia-Chi Yao

A numerical study has been conducted to investigate the behavior of the vortical wake created by a square cylinder placed in a laminar boundary-layer flow. The calculations are performed by solving the unsteady 2D Navier-Stokes equations with a finite-volume method. The Reynolds-number regime investigated is from 500 to 1500. Another parameter that is varied is the distance of the cylinder from the wall. The initial and subsequent development of the vortex shedding phenomenon are investigated. The presence of the wall is found to have strong effects on the properties of these vortices, as well as lift, drag, and Strouhal number.


Author(s):  
S. Bhattacharyya ◽  
D. K. Maiti

Numerical study on the wake behind a square cylinder placed parallel to a wall has been made. Flow has been investigated in the laminar Reynolds number (based on the cylinder length) range. We have studied the flow field for different values of the non-dimensional gap length between cylinder and the wall. The case when the cylinder is placed on the wall has also been considered. The governing unsteady Navier-Stokes equations are discretised through the finite volume method on staggered grid system. A SIMPLER type of algorithm has been used to compute the discretised equations iteratively. Vortex shedding has been found to be influenced by the wall. Vortex shedding suppression occurs beyond a critical value of the gap length. Due to the shear, the drag experienced by the cylinder is found to increase with the reduction of gap length. The flow is found to be steady when the cylinder is placed on the wall at a range of Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document