Moisture management properties of combination herbal extracts treated single jersey knitted fabrics

2019 ◽  
Vol 31 (2) ◽  
pp. 284-298
Author(s):  
K. Chandrasekaran ◽  
M. Senthil Kumar

Purpose The purpose of this paper is to explore the synergic effect of wild turmeric (Curcuma Aromatica Salisb.) and holy basil (Ocimum Tenuiflorum L.) combination herbal extracts treatment on the moisture management properties of cotton, lyocell and micro-denier single jersey knitted fabrics and the factors affecting it, which is intended for the development of healthcare apparel products. Design/methodology/approach The pre-treated single jersey knitted fabrics of cotton, lyocell and micro-denier polyester fabrics were given finishing treatment with the wild turmeric (Curcuma Aromatica Salisb.) and holy basil (Ocimum Tenuiflorum L.) combination herbal extract proportions of 100%:0%, 75%:25%,50%:50%; 25%:75% and 0%:100%. The D-optimal factorial design developed using Design Expert software was used for the study. The finishing treatments were carried out using the pad−dry−cure method. The aim of the work is to find out the influence of combination herbal extract proportion, textile material and their interaction effect on the moisture management properties. Findings The ANOVA results revealed that the overall moisture management properties of single jersey knitted fabrics are influenced by the material type, combination herbal extract proportion and the interaction between material type and the combination herbal extracts proportion. The overall moisture management properties of combination herbal extracts treated cotton single jersey fabrics are found to be better than that of lyocell and micro-denier polyester fabrics due to their excellent accumulative one-way transport capability after the finishing treatment. Among the combination herbal extract proportions, 50:50 per cent combination herbal extract proportion was found to be better than other proportions. Originality/value The study on the moisture management properties of combination herbal extracts of wild turmeric (Curcuma Aromatica Salisb.) and holy basil (Ocimum Tenuiflorum L.) is a novel attempt to explore the synergic effect of active constituents in both the herbs.

2016 ◽  
Vol 28 (4) ◽  
pp. 420-428 ◽  
Author(s):  
Govindan Karthikeyan ◽  
Govind Nalankilli ◽  
O L Shanmugasundaram ◽  
Chidambaram Prakash

Purpose – The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns. Design/methodology/approach – Bamboo, tencel fibre and blends of the two fibres were spun into yarns of identical linear density (30s Ne). Each of the blended yarns so produced was converted to single jersey knitted fabrics with loose, medium and tight structures. Findings – An increase in tencel fibre in the fabric had led to a reduction in fabric thickness and GSM. Air permeability and water-vapour permeability also increased with increase in tencel fibre content. The anticipated increase in air permeability and relative water vapour permeability with increase in stitch length was observed. The thermal conductivity of the fabrics was generally found to increase with increase in the proportion of bamboo. Research limitations/implications – It is clear from the foregoing that, although a considerable amount of work has been done on bamboo blends and their properties, still there are many gaps existing in the literature, in particular, on thermal comfort, moisture management and spreading characteristics. Thus the manuscript addresses these issues and provides valuable information on the comfort characteristics of the blended fabrics for the first time. In the evolution of this manuscript, it became apparent that a considerable amount of work was needed to fill up the gaps existing in the literature and hence this work which deals with an investigation of the blend yarn properties and comfort properties of knitted fabrics was taken up. Originality/value – This research work is focused on the thermal comfort parameters of knitted fabrics made from 100 per cent tencel yarn, 100 per cent bamboo yarn and tencel/bamboo blended yarns of different blend ratios.


2019 ◽  
Vol 31 (6) ◽  
pp. 741-754
Author(s):  
Seval Uyanik ◽  
Kubra Hatice Kaynak

Purpose Elastane yarns contribute significant elastic properties to all types of fabrics and these properties for very important for wears including tights, sportswear, under wear, casual wear, swimwear, corsetry, etc. in terms of appearance, comfort and duration of wear. The paper aims to discuss this issue. Design/methodology/approach It is investigated with this study strength, fatigue and bagging properties of plated plain knitted fabrics containing different rates of elastane. Findings The study showed that single jersey, not having elastane and having the lowest fabric tightness, has the lowest bursting strength, the highest fatigue loading values in high extensions, the lowest fatigue height values and the worst bagging behavior. On the contrary of single jersey, full elastane fabric has the exact opposite characteristics considering the fabric properties examined. Originality/value Fabric with 1×1 elastane and fabric with 2×1 elastane is similar, and these fabrics show bagging behavior better than single jersey and worse than full elastane fabric whereas the other properties of these fabrics are close to full elastane fabric.


2016 ◽  
Vol 88 (3) ◽  
pp. 275-292 ◽  
Author(s):  
Jefferson M Souza ◽  
Sandra Sampaio ◽  
Welter C Silva ◽  
Sidney G de Lima ◽  
Andrea Zille ◽  
...  

Eight functional single jersey plain knitted fabrics have been developed in order to assess a quantitative analysis of various comfort-related properties in terms of thermal control, air and water vapor permeability, wickability, coefficient of kinetic friction and antimicrobial efficiency, using eight different commercially available functional yarns: Polyester Craque® and viscose Craque® conventional yarns as controls; Finecool® and Coolmax® polyester yarns for moisture management and quick drying; Holofiber® polyester yarns containing an optical responsive material that the producer claims to improve body oxygenation; Airclo® polyester hollow yarns for efficient control of body temperature; and, finally, polyester Trevira® and viscose Seacell® for antimicrobial activity. According to the results, Coolmax® for moisture management, Airclo® for thermal control and Seacell® for antimicrobial activity present the best performances as technical textiles for sportswear for the respective specific functional property.


2016 ◽  
Vol 45 (3) ◽  
pp. 199-205 ◽  
Author(s):  
Z.A. Raza ◽  
F. Anwar ◽  
N. Ahmad ◽  
A. Rehman ◽  
N. Nasir

Purpose The paper aims to improve the protective and comfort properties of both woven and knitted acrylic fabrics by applying a hybrid waterborne polyurethane/fluorocarbon hydrophobic finish. Design/methodology/approach In this study, it was found that the transportation of water from fabrics is one of the important textile parameters. To improve this property, a polyurethane-based finish (Dicrylan BSRN®) and an oil- and water-repellent finish (Oleophobol ZSR®) were applied by using the pad-dry-cure method. After applying the finishes, the resultant fabric samples were investigated for various textile properties. Findings The application of Oleophobol ZSR® increased the absorbency time, indicating that the fabric became hydrophobic, whereas the application of Dicrylan BSRN® finish improved the moisture management properties of the woven acrylic. The tensile strength of the woven acrylic fabric was not significantly affected by the application of these finishes. The contact angle of treated knitted fabrics increased and air permeability decreased with an increase in the concentration of Oleophobol ZSR®. Practical implications Moisture management is one of the crucial performance criteria in today’s apparel industry. Therefore, fluorochemicals are one of the major precursors used in water-repellent finishes and waterproof membranes in outdoor garments. Based on this fact, this research work focused on the textile sector, where moisture management is required. Originality/value This is the first report about the combined application of waterborne polyurethane and fluorochemical-based finishes on acrylic fabrics to tune their comfort and hydrophobic properties.


2014 ◽  
Vol 26 (3) ◽  
pp. 222-234 ◽  
Author(s):  
E. Perumalsamy ◽  
J.C. Sakthivel ◽  
N. Anbumani

Purpose – The purpose of this paper is to elucidate the stress-strain relationships of single-jersey knitted fabrics from uniaxial tensile test followed by deformation behavior using finite element analysis. In order to elaborate the study, high, medium and low tightness knitted fabrics were selected and deformation of fabrics analyzed in course, wales and bias directions (0, 45 and 90 degrees). Design/methodology/approach – This study focussed on uni-axial tensile test of produced test samples using Instron 6021 tester and a development of single-jersey knitted loop model using Auto Desk Inventor software (ADI). The knitted fabric material properties and knitted loop model was imported to ANSYS 12.0 software. Findings – Due to structural changes the tightness and thickness of knitted fabric decreases with increase in loop length The tensile result shows maximum breaking strength at course direction (13.43 kg f/mm2 at 2.7 mm) and maximum extension at wales direction (165.77 kg f/mm2 at 3.3 mm). When the loop length increases, the elongation of fabrics increased and load carrying capacity of fabrics reduced. The Young's modulus, Poisson's ratio and shear modulus of fabrics reduced with increase in loop length. The deformation of fabrics increased with increase in loop length. The increase in loop length gives large amount of structural changes and it is due to slacking or jamming in loops and loosening in dimensions. When comparing the deformation results, the variation within the fabric is higher and structural damage little more when increasing the loop length of the fabric. Originality/value – From ANOVA test, stress and strain distribution was statistically significant among course, wales and bias directions at 95 percent confidence level. The values got from Instron test indicates that testing direction can alter its deformation. In deformation analysis, comparing both experimental and prediction, high amount of structural changes observed in wales direction. The used tetrahedral elements can be used for contact analysis with high accuracy. For non-linear problems, consistent approach was proposed which makes the sense to compare with experimental methods. The proposed model will make possible developments and the preliminary validation tests shows good agreement with experimental data.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Amany Khalil ◽  
Abdelmonem Fouda ◽  
Pavla Těšinová ◽  
Ahmed S. Eldeeb

AbstractThis research aims to evaluate the properties of cotton single jersey knitted fabrics (SJKF) produced from cotton/spandex yarns at different Lycra states. So, four different SJKF were produced, namely 100% cotton, cotton with additional Lycra (full-platted), core, and dual-core-spun (DCS) yarns with the same loop length. The thermal comfort properties, fabric recovery, total hand value (THV), moisture management parameters, and air permeability were measured. The experimental results showed that the use of DCS yarns in the SJKF improves the fabric elastic recovery by 100%. The obtained values of air permeability, THV, and overall moisture management capacity of stretched SJKF are lower than 100% cotton fabric sample. Thermal absorptivity of core and dual-core samples increased by 27% and the water vapor permeability decreased by 18% compared to 100% cotton fabric sample.


2018 ◽  
Vol 30 (3) ◽  
pp. 347-362 ◽  
Author(s):  
T. Karthik ◽  
R. Murugan ◽  
Pandurangan Senthilkumar

Purpose Clothing must also assist the body’s thermal control function under changing physical loads in such a way that the body’s thermal and moisture management is balanced, and a microclimate is created next to the skin. One of the factors which affect moisture transport in a fabric is a fibre type. Hence, the purpose of this paper is to blend the natural hollow and low density fibre, milkweed, with cotton fibre at different proportions and to analyse and compare the influence of milkweed blend proportion on moisture management properties of rotor yarn fabrics with 100 per cent cotton fabric. Design/methodology/approach In the present study, cotton/milkweed blended rotor yarns were produced by using S-4 cotton variety and milkweed fibres in three different blend proportions such as cotton/milkweed 80/20, 60/40 and 40/60 along with 100 per cent cotton yarn with yarn count of 20 Ne. The single jersey knitted fabrics were produced with similar constructional parameters and then the fabrics were then scoured, bleached and neutralised as per the standard procedure. The fabrics have been analysed for its various moisture management properties using moisture management tester (MMT) and are statistically analysed. Findings The results indicate that, all the C/M blended fabrics have been classified as “moisture management fabric” and 100 per cent cotton fabric has been classified as “Fast absorbing and Quick Drying Fabric”. The overall moisture management capacity of C/M 40/60 fabric is excellent and could be used for summer, active and summer wear applications. One-way ANOVA analysis carried out at 95 per cent confidence level showed that the results are statistically significant. The pair-wise strength and association between various moisture management indices was analysed using Pearson correlation coefficient and observed that OWTC and OMMC was found to be positively and linearly related to each other. Originality/value The authors are confident that the cotton/milkweed blended yarns can be used as an inner wear and sportswear applications owing to the higher moisture regain and hollowness of milkweed fibre combined with the low packing density of C/M blended yarns which leads to overall improvement in moisture management properties of fabrics.


1992 ◽  
Vol 62 (4) ◽  
pp. 200-211 ◽  
Author(s):  
Pau-Lin Chen ◽  
Roger L. Barker ◽  
Gary W. Smith ◽  
Barbara Scruggs

Two groups of weft-knitted fabrics, single and double knits, were selected to represent typical summer T-shirts and winter sportswear such as sweaters and other knit tops. Two kinds of analyses were performed: subjective overall handle and primary sensory factors were evaluated using a 99 point polar-word scale, and physical and thermal properties were characterized using the Kawabata evaluation system. Regression analysis was used to relate subjective and objective measurements. The handle of single knits was strongly related to the perception of softness and lightness; the handle of double knits was influenced by the perception of slickness and tightness. Surface friction and weight were associated with the hand ranking of single knits. Fabric surface roughness and bending hysteresis were physical properties that correlated with the hand ranking for double knits. The handle of plain knit loop structures was rated better than that of tuck-loop knits. For summer T-shirt material, single jersey was the preferred choice; for winter sportswear, interlock knits were preferred to other double knits.


Sign in / Sign up

Export Citation Format

Share Document