Analysis of machinery breakdowns in power plants fed by biomass and MSW

2014 ◽  
Vol 8 (3) ◽  
pp. 301-311
Author(s):  
Stefano De Antonellis ◽  
Mario De Antonellis

Purpose – The aim of the study is to identify main failure phenomena and to evaluate reparation costs, reparation time, loss of profit and their relationship with power plant and faulty components age. In this work, several machinery breakdowns occurred in thermal power plants fed by solid biomass, biodiesel, biogas and municipal solid waste, have been investigated. In the period between 2004 and 2012, 23 faults have been analyzed. Design/methodology/approach – Each fault has been classified considering: power plant technical specifications, type of damage, reparation cost, reparation time and loss of profit (when data are available). The whole data have been, therefore, compared to find out significant information. Findings – It has been pointed out that relevant property damages are mainly caused by old components failure. In addition, the loss of profit is generally much higher than the property damage (six times on average basis). Originality/value – The study provides useful information that can be of interest for personnel of energy utilities, banks and insurance companies in managing power plants risks and in planning the availability of energy services.

2012 ◽  
Vol 58 (4) ◽  
pp. 351-356
Author(s):  
Mincho B. Hadjiski ◽  
Lyubka A. Doukovska ◽  
Stefan L. Kojnov

Abstract Present paper considers nonlinear trend analysis for diagnostics and predictive maintenance. The subject is a device from Maritsa East 2 thermal power plant a mill fan. The choice of the given power plant is not occasional. This is the largest thermal power plant on the Balkan Peninsula. Mill fans are main part of the fuel preparation in the coal fired power plants. The possibility to predict eventual damages or wear out without switching off the device is significant for providing faultless and reliable work avoiding the losses caused by planned maintenance. This paper addresses the needs of the Maritsa East 2 Complex aiming to improve the ecological parameters of the electro energy production process.


Author(s):  
Ye. G. Polenok ◽  
S. A. Mun ◽  
L. A. Gordeeva ◽  
A. A. Glushkov ◽  
M. V. Kostyanko ◽  
...  

Introduction.Coal dust and coal fi ring products contain large amounts of carcinogenic chemicals (specifically benz[a]pyrene) that are different in influence on workers of coal mines and thermal power plants. Specific immune reactions to benz[a]pyrene therefore in these categories of workers can have specific features.Objective.To reveal features of antibodies specifi c to benz[a]pyrene formation in workers of coal mines and thermal power plants.Materials and methods.The study covered A and G class antibodies against benz[a]pyrene (IgA-Bp and IgG-Bp) in serum of 705 males: 213 donors of Kemerovo blood transfusion center (group 1, reference); 293 miners(group 2) and 199 thermal power plant workers (group 3). Benz[a]pyrene conjugate with bovine serum albumin as an adsorbed antigen was subjected to immune-enzyme assay.Results.IgA-Bp levels in the miners (Me = 2.7) did not differ from those in the reference group (Me = 2.9), but in the thermal power plant workers (Me = 3.7) were reliably higher than those in healthy men and in the miners (p<0.0001). Levels of IgG-Bp in the miners (Me = 5.0) appeared to be lower than those in the reference group (Me = 6.4; (p = 0.05). IgG-Bb level in the thermal power plantworkers (Me = 7.4) exceeded the parameters in the healthy donors and the miners (p<0.0001). Non-industrial factors (age and smoking) appeared tohave no influence on specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers.Conclusions.Specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers are characterized by peculiarities: the miners demonstrate lower levels of class A serum antibodies to benz[a]pyrene; the thermal power plant workers present increased serum levels of class G antibodies to benz[a]pyrene. These peculiarities result from only the occupational features, but do not depend on such factors as age, smoking and length of service at hazardous production. It is expedient to study specific immune reactions to benz[a]pyrene in workers of coal mines and thermal power plants, to evaluate individual oncologic risk and if malignancies occur.


2012 ◽  
Vol 2 (8) ◽  
pp. 1-9
Author(s):  
Saroj Koul

Subject area Operations and human resourcing. Study level/applicability This case study is intended for use in graduate, executive level management and doctoral programs. The case study illustrates a combined IT and HR driven participative management control system in a flexible organization structure. It is intended for a class discussion rather than to illustrate either effective or ineffective handling of an administrative situation. Case overview The case describes the situation of managing unskilled workforces (≥14,000 workers) during the construction phase of the 4 × 250MW power plants both for purposes of turnout as well as due compensation, in the event of an accident. The approved labour forces appointed for 45 × 8 h. Man-days after a rigorous fitness test and approvals of the safety officer are allocated housing and other necessary amenities and a commensurate compensation system. Expected learning outcomes These include: illustrating typical organizational responsibility structure at a construction site of a large power plant; illustrating the planning and administrative control mechanism in implementing strategy at a construction site of a large power plant; offering students the opportunity to understand and view a typical operational (project) structure; allowing students to speculate adaptations in the wake of an ever-changing business and company environment; and providing an opportunity to introduce a power scenario in India, Indian labour laws and radio frequency identification technology and to relate this to the case in context. Supplementary materials Teaching notes are available; please consult your librarian for access.


2011 ◽  
Vol 383-390 ◽  
pp. 4130-4133
Author(s):  
Song Feng Tian ◽  
Wei Wang ◽  
Yun Feng Tian ◽  
Shuang Bai Liu

There are many kinds of energy loss indicators in power plant, and there are some relevance among the various indicators. So extraction of the key indicators plays an important role between in energy loss analysis of power plants and optimal management of thermal power plants. Based on the characteristics of these indicators, the idea of rough sets was applied to the energy loss analysis of thermal power plants, then we proposed a new algorithm -- use fuzzy C means algorithm (FCM) to discrete cluster the energy loss indicators of thermal power plant, and then analysis simplified the results with algorithm Johnson. Real experiments (Chaozhou 1,2 and Ningde 3,4 assembling units which of the same type in the SIS system under the THA working condition)’ results had proved high accuracy and valuable of the algorithm.


2018 ◽  
Vol 177 ◽  
pp. 01001 ◽  
Author(s):  
Maciej Cholewiński

In this work the environmental benefits in the atmospheric emissions after the implementation of 3,000 MW nuclear power plants were assessed and presented. To determine the quantity of avoided emissions of CO2, NOx, SO2 and Hg compounds, harmonised stoichiometric combustion model dedicated to solid fuel fired power plant was created. To increase the credibility of the studies, future strict emission standards (Directive 2010/75/EU, BAT documents for LCP) were included as well. In conducted studies, representative samples of 3 different Polish solid fuels were examined (by comprehensive proximate and ultimate analysis) and used in assessment. It was proven that by the replacement of thermal solid fuel power plant by nuclear unit (with annual production rate of 22.4 TWh net) up to 16.4 million tonnes of lignite, 8.9 million tonnes of hard coal or 13.1 million tonnes of solid biomass can be saved. Further, for the case of lignite, the emission, at least, of 21.29 million tonnes of CO2 (6.9% of all Polish emission in 2015), 1,610 tonnes of dust (0.4%), 16,102 tonnes of NOx (2.2%), 16,102 tonnes of SO2 (2.0%) and 564 kg of mercury (5.9%) can be avoided. For selected hard coal, calculated emission savings were equal to 17.60 million tonnes of CO2 (5.7%), 1,357 tonnes of dust (0.4%), 13,566 tonnes of NOx (1.9%), 13,566 tonnes of SO2 (1.7%), 271 kg of mercury (2.9%), and for biomass - equal to 20.04 million tonnes of CO2 (6.5%), 1,471 tonnes of dust (0.4%), 14,712 tonnes of NOx (2.0%), 14,712 tonnes of SO2 (1.8%) and 294 kg of mercury (3.1%).


Author(s):  
Kajori Parial ◽  
S. Mukherjee ◽  
A. R. Ghosh ◽  
D. Sengupta

Coal combustion in thermal power plants releases ash. Ash is reported to cause different adverse health hazards in humans and other organisms. Owing to the presence of radionuclides, it is also considered as a potential radiation hazard. In this study, based on the surface radiation measurements and relevant ancillary data, expected radiation risk zones were identified with regard to the human population residing near the Thermal Power Plant. With population density as the risk determining criteria, about 20% of the study area was at &lsquo;High&rsquo; risk and another 20% of the study area was at &lsquo;Low&rsquo; risk zone. The remaining 60% was under medium risk zone. Based on the findings remedial measures which may be adopted have been suggested.


Akustika ◽  
2021 ◽  
pp. 133-137
Author(s):  
Vladimir Tupov ◽  
Vitaliy Skvortsov

The power equipment of thermal power plants is a source of noise to the surrounding area. One of the sources of noise for the surrounding area are gas distribution points (GDP) of thermal power plants (TPP) and district thermal power plants (RTS). Noise from gas distribution points may exceed sanitary standards at the border of the sanitary protection zone. The article shows that the radiated noise from gas distribution points depends on the power of the thermal power plant (natural gas consumption) and the type of valves. Three types of valves used in gas distribution points are considered. Formulas are obtained for calculating the width of the sanitary protection zone for gas distribution points for thermal stations, depending on the consumption of natural gas (electric power of the thermal power plant) and the type of valve. It is shown that, depending on the valve used, the noise level at the border of the sanitary protection zone can either meet sanitary standards or exceed them. This allows at the design stage to select the required type of valve or to determine mitigation measures from hydraulic fracturing.


Facilities ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Rezaee ◽  
Seyed Rahman Eghbali

Purpose This paper aims to interpret the workers’ perception of combined cycle power plants through visual qualities. Design/methodology/approach In this qualitative research landscape image, the sketching technique is applied as a data collection method to extract participants’ mental images by asking them to draw sketches. The resulted sketches besides obtained verbal and written data were analyzed and coded in three stages to explain the workers’ perception. Visual qualities were studied as a mean which made it possible to interpret the workers’ perception of their workplace. Findings Careful analysis of the gathered data and the emerged concepts via open coding identify four axial categories of the concepts forming the workers’ perception of the power plants: “inconsistency with nature,” “emphasis on function and product,” “health and environmental threats” and “interpretation of the built form as a mass instead of space.” These four categories support the core category of the proposed theory which is “perceiving building as the machine.” This phrase explains how workers perceive power plants as machines, not as supportive and lively environments. This is followed by consequences, “precedence of building over human” is prominent among them. Originality/value In the relevant body of literature, visual impact and visual perception of conventional thermal power plants are largely missed, as well as visual relation to environment focusing on a single building or groups of adjacent buildings. This paper covers both areas via asking for sketches as a data collection method, in addition, to interview the participants to clarify their mental image of the work environment.


Author(s):  
Suchismita Satapathy

All companies are dependent on their raw material providers. The same applies in the case of thermal power plants. The major raw material for a thermal power plant is the coal. There are a lot of companies which in turn provide this coal to the thermal power plant. Some of these companies are international; some are local, whereas the others are localized. The thermal power plants look into all the aspects of the coal providing company, before settling down for a deal. Some people are specifically assigned to the task of managing the supply chain. The main motive is to optimize the whole process and achieve higher efficiency. There are a lot of things which a thermal power plant looks into before finalizing a deal, such as the price, quality of goods, etc. Thus, it is very important for the raw material providers to understand each and every aspect of the demands of the thermal power plant. A combination of three methods—Delphi, SWARA, and modified SWARA—has been applied to a list of factors, which has later been ranked according to the weight and other relevant calculations.


2018 ◽  
Vol 35 (4) ◽  
pp. 996-1010 ◽  
Author(s):  
Subhash Malik ◽  
Puran Chand Tewari

Purpose The purpose of this paper is to deal with the formation of performance modeling and maintenance priorities for the water flow system (WFS) of a coal-based thermal power plant. Design/methodology/approach The system consists of five subsystems, i.e. condenser, condensate extraction pump, Low Pressure Heater, deaerator and boiler feed pump. The Chapman-Kolmogorov equations are generated on the basis of transition diagram and further solved recursively to obtain the performance modeling with the help of normalizing condition using Markov approach. Findings Availability matrices are formed with the help of different combinations of failures and repair rates of all subsystems. The performance of all subsystems is evaluated in terms of availability level achieved in availability matrices and plots of failure rates and repair rates of various subsystems. The maintenance priorities of various subsystems of WFS are decided on the basis of repair rate. Originality/value The adoption of both performance modeling and maintenance priorities decision by the management of thermal power plant will result in the enhancement of system availability and reduction in maintenance cost.


Sign in / Sign up

Export Citation Format

Share Document