scholarly journals Supporting the initial work of evidence-based improvement cycles through a data-intensive partnership

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alex J. Bowers ◽  
Andrew E. Krumm

Purpose Currently, in the education data use literature, there is a lack of research and examples that consider the early steps of filtering, organizing and visualizing data to inform decision-making. The purpose of this study is to describe how school leaders and researchers visualized and jointly made sense of data from a common learning management system (LMS) used by students across multiple schools and grades in a charter management organization operating in the USA. To make sense of LMS data, researchers and practitioners formed a partnership to organize complex data sets, create data visualizations and engage in joint sensemaking around data visualizations to begin to launch continuous improvement cycles. Design/methodology/approach The authors analyzed LMS data for n = 476 students in Algebra I using hierarchical cluster analysis heatmaps. The authors also engaged in a qualitative case study that examined the ways in which school leaders made sense of the data visualization to inform improvement efforts. Findings The outcome of this study is a framework for informing evidence-based improvement cycles using large, complex data sets. Central to moving through the various steps in the proposed framework are collaborations between researchers and practitioners who each bring expertise that is necessary for organizing, filtering and visualizing data from digital learning environments and administrative data systems. Originality/value The authors propose an integrated cycle of data use in schools that builds on collaborations between researchers and school leaders to inform evidence-based improvement cycles.

Author(s):  
Abou_el_ela Abdou Hussein

Day by day advanced web technologies have led to tremendous growth amount of daily data generated volumes. This mountain of huge and spread data sets leads to phenomenon that called big data which is a collection of massive, heterogeneous, unstructured, enormous and complex data sets. Big Data life cycle could be represented as, Collecting (capture), storing, distribute, manipulating, interpreting, analyzing, investigate and visualizing big data. Traditional techniques as Relational Database Management System (RDBMS) couldn’t handle big data because it has its own limitations, so Advancement in computing architecture is required to handle both the data storage requisites and the weighty processing needed to analyze huge volumes and variety of data economically. There are many technologies manipulating a big data, one of them is hadoop. Hadoop could be understand as an open source spread data processing that is one of the prominent and well known solutions to overcome handling big data problem. Apache Hadoop was based on Google File System and Map Reduce programming paradigm. Through this paper we dived to search for all big data characteristics starting from first three V's that have been extended during time through researches to be more than fifty six V's and making comparisons between researchers to reach to best representation and the precise clarification of all big data V’s characteristics. We highlight the challenges that face big data processing and how to overcome these challenges using Hadoop and its use in processing big data sets as a solution for resolving various problems in a distributed cloud based environment. This paper mainly focuses on different components of hadoop like Hive, Pig, and Hbase, etc. Also we institutes absolute description of Hadoop Pros and cons and improvements to face hadoop problems by choosing proposed Cost-efficient Scheduler Algorithm for heterogeneous Hadoop system.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Philip M. Reeves ◽  
Jennifer Claydon ◽  
Glen A. Davenport

Purpose Program evaluation stands as an evidence-based process that would allow institutions to document and improve the quality of graduate programs and determine how to respond to growing calls for aligning training models to economic realities. This paper aims to present the current state of evaluation in research-based doctoral programs in STEM fields. Design/methodology/approach To highlight the recent evaluative processes, the authors restricted the initial literature search to papers published in English between 2008 and 2019. As the authors were motivated by the shift at NIH, this review focuses on STEM programs, though papers on broader evaluation efforts were included as long as STEM-specific results could be identified. In total, 137 papers were included in the final review. Findings Only nine papers presented an evaluation of a full program. Instead, papers focused on evaluating individual components of a graduate program, testing small interventions or examining existing national data sets. The review did not find any documents that focused on the continual monitoring of training quality. Originality/value This review can serve as a resource, encourage transparency and provide motivation for faculty and administrators to gather and use assessment data to improve training models. By understanding how existing evaluations are conducted and implemented, administrators can apply evidence-based methodologies to ensure the highest quality training to best prepare students.


Author(s):  
Avinash Navlani ◽  
V. B. Gupta

In the last couple of decades, clustering has become a very crucial research problem in the data mining research community. Clustering refers to the partitioning of data objects such as records and documents into groups or clusters of similar characteristics. Clustering is unsupervised learning, because of unsupervised nature there is no unique solution for all problems. Most of the time complex data sets require explanation in multiple clustering sets. All the Traditional clustering approaches generate single clustering. There is more than one pattern in a dataset; each of patterns can be interesting in from different perspectives. Alternative clustering intends to find all unlike groupings of the data set such that each grouping has high quality and distinct from each other. This chapter gives you an overall view of alternative clustering; it's various approaches, related work, comparing with various confusing related terms like subspace, multi-view, and ensemble clustering, applications, issues, and challenges.


Author(s):  
Phillip L. Manning ◽  
Peter L. Falkingham

Dinosaurs successfully conjure images of lost worlds and forgotten lives. Our understanding of these iconic, extinct animals now comes from many disciplines, not just the science of palaeontology. In recent years palaeontology has benefited from the application of new and existing techniques from physics, biology, chemistry, engineering, but especially computational science. The application of computers in palaeontology is highlighted in this chapter as a key area of development in studying fossils. The advances in high performance computing (HPC) have greatly aided and abetted multiple disciplines and technologies that are now feeding paleontological research, especially when dealing with large and complex data sets. We also give examples of how such multidisciplinary research can be used to communicate not only specific discoveries in palaeontology, but also the methods and ideas, from interrelated disciplines to wider audiences. Dinosaurs represent a useful vehicle that can help enable wider public engagement, communicating complex science in digestible chunks.


2010 ◽  
pp. 1797-1803
Author(s):  
Lisa Friedland

In traditional data analysis, data points lie in a Cartesian space, and an analyst asks certain questions: (1) What distribution can I fit to the data? (2) Which points are outliers? (3) Are there distinct clusters or substructure? Today, data mining treats richer and richer types of data. Social networks encode information about people and their communities; relational data sets incorporate multiple types of entities and links; and temporal information describes the dynamics of these systems. With such semantically complex data sets, a greater variety of patterns can be described and views constructed of the data. This article describes a specific social structure that may be present in such data sources and presents a framework for detecting it. The goal is to identify tribes, or small groups of individuals that intentionally coordinate their behavior—individuals with enough in common that they are unlikely to be acting independently. While this task can only be conceived of in a domain of interacting entities, the solution techniques return to the traditional data analysis questions. In order to find hidden structure (3), we use an anomaly detection approach: develop a model to describe the data (1), then identify outliers (2).


2022 ◽  
pp. 67-76
Author(s):  
Dineshkumar Bhagwandas Vaghela

The term big data has come due to rapid generation of data in various organizations. In big data, the big is the buzzword. Here the data are so large and complex that the traditional database applications are not able to process (i.e., they are inadequate to deal with such volume of data). Usually the big data are described by 5Vs (volume, velocity, variety, variability, veracity). The big data can be structured, semi-structured, or unstructured. Big data analytics is the process to uncover hidden patterns, unknown correlations, predict the future values from large and complex data sets. In this chapter, the following topics will be covered more in detail. History of big data and business analytics, big data analytics technologies and tools, and big data analytics uses and challenges.


Author(s):  
Paul Rippon ◽  
Kerrie Mengersen

Learning algorithms are central to pattern recognition, artificial intelligence, machine learning, data mining, and statistical learning. The term often implies analysis of large and complex data sets with minimal human intervention. Bayesian learning has been variously described as a method of updating opinion based on new experience, updating parameters of a process model based on data, modelling and analysis of complex phenomena using multiple sources of information, posterior probabilistic expectation, and so on. In all of these guises, it has exploded in popularity over recent years.


2016 ◽  
Vol 78 (6-13) ◽  
Author(s):  
Azlin Ahmad ◽  
Rubiyah Yusof

The Kohonen Self-Organizing Map (KSOM) is one of the Neural Network unsupervised learning algorithms. This algorithm is used in solving problems in various areas, especially in clustering complex data sets. Despite its advantages, the KSOM algorithm has a few drawbacks; such as overlapped cluster and non-linear separable problems. Therefore, this paper proposes a modified KSOM that inspired from pheromone approach in Ant Colony Optimization. The modification is focusing on the distance calculation amongst objects. The proposed algorithm has been tested on four real categorical data that are obtained from UCI machine learning repository; Iris, Seeds, Glass and Wisconsin Breast Cancer Database. From the results, it shows that the modified KSOM has produced accurate clustering result and all clusters can clearly be identified.


2018 ◽  
Vol 43 (4) ◽  
pp. 179-190
Author(s):  
Pritha Guha

Executive Summary Very large or complex data sets, which are difficult to process or analyse using traditional data handling techniques, are usually referred to as big data. The idea of big data is characterized by the three ‘v’s which are volume, velocity, and variety ( Liu, McGree, Ge, & Xie, 2015 ) referring respectively to the volume of data, the velocity at which the data are processed and the wide varieties in which big data are available. Every single day, different sectors such as credit risk management, healthcare, media, retail, retail banking, climate prediction, DNA analysis and, sports generate petabytes of data (1 petabyte = 250 bytes). Even basic handling of big data, therefore, poses significant challenges, one of them being organizing the data in such a way that it can give better insights into analysing and decision-making. With the explosion of data in our life, it has become very important to use statistical tools to analyse them.


Sign in / Sign up

Export Citation Format

Share Document