Effect of laser surface texturing on tribological properties of polyimide composites in the application of traveling wave rotary ultrasonic motor

2018 ◽  
Vol 70 (4) ◽  
pp. 569-577 ◽  
Author(s):  
Xiaoliang Liu ◽  
Gai Zhao ◽  
Jinhao Qiu

Purpose The purpose of this paper is to investigate the effect of laser surface texturing on the tribological properties of polyimide composites and the output performance of traveling wave rotary ultrasonic motor. Design/methodology/approach The surface texturing on polyimide composites specimens were fabricated by laser ablation process of different dimple densities, and then the tribological properties were tested by a flat-on-flat tribometer under dry conditions. Finally, the output performance of the traveling wave rotary ultrasonic motor was tested to verify the effectiveness of dimples surface texturing. Findings The results show that surface texturing can greatly enhance the friction coefficient of contact interface, especially the specimen with a dimple density of 7.06 per cent exhibited the highest friction coefficient among the specimens. When the input voltage is 500 V, the output power, locked-rotor torque and output torque of ultrasonic motor with textured PI of 7.06 per cent dimple density as friction material at the speed of 100 r/min increased by 13.8, 19 and 12.8 per cent compared to that of the untextured PTFE, respectively. When the ultrasonic motor reverses, the output performance is increased by 20.9, 40.3 and 17.7 per cent, respectively. Originality/value Surface texturing is an effective way to improve the friction behavior of polyimide composites and then correspondingly enhance the energy conversion efficiency and output performance of the traveling wave rotary ultrasonic motor.

2018 ◽  
Vol 70 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Shuwen Wang ◽  
Feiyan Yan ◽  
Ao Chen

Purpose The purpose of this paper is to investigate the tribological effects of laser surface texturing (LST) and residual stress on functional surfaces. Design/methodology/approach Three different surface textures (circular dimple, elliptical dimple and groove) with two different textured area ratios (10 and 20 per cent) are designed and fabricated by a Picosecond Nd YAG Laser machine. The friction and wear performance of textured specimens is tested using a UMT-2 friction and wear testing machine in mixed lubrication. Findings Test results show that elliptical dimples exhibit the best performance in wear resistance, circular dimples in friction reduction and grooves in stabilization of friction. The surfaces with larger textured area density exhibit better performance in both friction reduction and wear resistance. The improved performance of LST is the coupled effect of surface texture and residual stress. Originality/value The findings of this study may provide guidance for optimal design of functional surface textures in reciprocating sliding contacts under mixed or hydrodynamic lubrication, which can be used in automotive and other industrial applications.


2016 ◽  
Vol 68 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Dawit Zenebe Segu ◽  
Pyung Hwang

Purpose – The purpose of this paper is to investigate and discuss the effect of multi-shape laser surface texturing (LST) steel surfaces on tribological performance. Design/methodology/approach – The textured surface with some specific formula arrays was fabricated by laser ablation process by combining patterns of circles and triangles, circles and squares and circles and ellipses. The tribological test was performed by a flat-on-flat tribometer under dry and lubrication conditions, and results were compared with that of untextured surface. Findings – The results showed that the textured surface had better friction coefficient performance than the untextured surface due to hydrodynamic lubrication effect. Through an increase in sliding speed, the beneficial effect of LST performance was achieved under dry and lubrication conditions. Originality/value – This paper develops multi-shape LST steel surfaces for improving the friction and wear performance under dry and lubrication conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Junru Wang ◽  
Quandai Wang ◽  
Yueyan Li ◽  
Meiling Guo ◽  
Pengyang Li ◽  
...  

Purpose The purpose of this paper is to investigate the effects of surface texture with roughness orientation considered on tribological properties under a mixed lubrication state numerically and experimentally. Design/methodology/approach Based on the average Reynolds equation and asperity contact model, the impacts of surface texture parameters and roughness orientation on lubrication properties have been calculated using finite difference method. Tin–bronze samples with various prescribed surface texture geometric parameters and roughness orientation were fabricated by laser surface texturing technique, and the tribology performance of the textured surface was studied experimentally. Findings The effects of surface geometric parameters and roughness orientation parameters have been discerned. The experimental observations are in good agreement with the numerical prediction, which suggests that the numerical scheme adopted in this work is suitable in capturing the surface texture and roughness effect under mixed lubrication state. Originality/value By meticulously controlling the surface roughness and surface texture geometric characteristics based on the laser surface texturing process, samples with prescribed surface texture parameters and roughness orientation consistent with that in theoretical studies were fabricated and the theoretical model and results were verified experimentally.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1155 ◽  
Author(s):  
Junyuan Huang ◽  
Songbo Wei ◽  
Lixin Zhang ◽  
Yingying Yang ◽  
Song Yang ◽  
...  

The superhydrophobic surface can change the friction property of the material, reduce the adhesion of the friction interface, and produce a certain slip, thereby reducing the friction coefficient. The laser has high energy, high density, and is especially suitable for the surface treatment of materials. The laser surface texturing is a good way to construct superhydrophobic surfaces. The experiment uses a nanosecond pulse laser to construct the groove texture on the nickel surface. The contact area between the air and the droplets retained on the rough surface is increased, effectively preventing the water droplets from entering the gully of the surface microstructure, reducing the water droplets and the solid surface. The contact area ultimately makes the surface exhibit excellent superhydrophobicity. A superhydrophobic nickel surface having an apparent contact angle of water (ACAW) of 160° and a sliding angle (SA) of less than 10° was prepared. The MM-W1B vertical universal friction and wear tester was used to test the groove texture samples with different depths. The surface texture can capture the wear debris generated by the wear and store the lubricant, which is beneficial to the formation of fluid dynamic pressure lubrication and improve the load. The friction coefficient is reduced from 0.65 of the unprocessed surfaces to 0.25 after the texturing, and the friction performance is greatly improved.


Author(s):  
Bart Raeymaekers ◽  
Izhak Etsion ◽  
Frank E. Talke

The friction coefficient is an important parameter in designing magnetic tape transports. We have introduced laser surface texturing to reduce the friction coefficient between guides and magnetic tape. The surface features enhance the formation of an air bearing and hence, reduce the friction coefficient.


2017 ◽  
Vol 329 ◽  
pp. 29-41 ◽  
Author(s):  
Johnny Dufils ◽  
Frédéric Faverjon ◽  
Christophe Héau ◽  
Christophe Donnet ◽  
Stéphane Benayoun ◽  
...  

2020 ◽  
Vol 42 (1) ◽  
pp. 159-164
Author(s):  
D. Maldonado-Cortés ◽  
L. Peña-Parás ◽  
C. Leyva Leyva ◽  
A. Guerrero ◽  
A. Garza ◽  
...  

2021 ◽  
Author(s):  
Vishal Uttamra Bagade ◽  
Muthukannan Duraiselvam ◽  
Niranjan Sarangi ◽  
Parthiban K

Abstract In aero gas turbine engine, copper nickel indium (CuNiIn) and molybdenum loaded disulphide (MoS2) duplex coating is applied on Ti6Al4V blades in bladed disk configuration of low pressure and high pressure compressor. Coating between blade and disk is provided to prevent fretting wear due to direct metal to metal contact of Ti6Al4V. Generally, grit blasting will be done for preparation of the surface before the application of coating. Laser surface texturing (LST) process can be explored by aero engine industry as a new surface preparation process for compressor blades. To compare two different surface preparation methods, Ti6Al4V surface is prepared by two different processes, conventional grit blasting as well as laser surface texturing (LST). LST with different elliptical and square patterns are created on Ti6Al4V. Surface topography is analyzed by SEM and WLI. CuNiIn is sprayed by atmospheric plasma spray (APS) and MoS2 on top of CuNiIn by painting and curing. Effects of surface preparation on coating adherence as well as on tribological properties are studied. The results showed that geometry and dimensions of LST pattern influences the coating adherence and wear performance. LST process can be optimized for better performance and explored as an alternative surface preparation process in industry for thermal spray coatings.


Sign in / Sign up

Export Citation Format

Share Document