groove texture
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuqin Yang ◽  
Q.H. Xiao ◽  
Chunhui Geng

Purpose This study aims to study the effect of micro-groove texture geometric parameters on the lubrication characteristics of the tripod universal coupling. Design/methodology/approach The Navier–Stokes equation was used to analyse the influence of micro-groove geometric parameters on the coupling’s lubrication performance. Further, Kriging approximate model and neighborhood cultivation genetic algorithm (NCGA) were used to optimise the micro-groove geometric parameters and improve the coupling’s lubrication performance. Findings The results show that as the micro-groove depth and width increase, respectively, the oil film-bearing capacity first increases and then decreases; on the contrary, the friction coefficient first decreases and then increases. With the increase of the micro-groove inclination angle, the bearing capacity of the oil film first increases and then remains unchanged. At the same time, the friction coefficient first decreases and then increases slightly. The lubricating performance of the optimised coupling is significantly improved: the optimised oil film-bearing capacity increases by 12.5%, the friction coefficient reduces by 14% and the maximum oil film pressure increases by 4.3%. Originality/value At present, the grease lubrication performance of the micro-groove textured tripod universal coupling has not been studied. The micro-groove parameters are optimised, and the coupling’s lubrication performance is improved greatly by the Kriging model and NCGA algorithm. It is of great significance to extend the coupling’s fatigue life.


Friction ◽  
2021 ◽  
Author(s):  
Chenwei Miao ◽  
Zhiwei Guo ◽  
Chengqing Yuan

AbstractThe running-in of cylinder liner-piston rings (CLPRs) is the most important process that must be performed before a marine diesel engine can be operated. The quality of running-in directly affects the reliability of a CLPR. The surface texture of a CLPR has been proven to significantly affect its lubrication performance. In this study, the tribological behavior of a CLPR during running-in is investigated. Three types of surface textures are generated on the CLPR via laser processing: dimple texture on piston rings, groove texture on cylinder liners, and co-texture on both sides. Subsequently, a series of tests are performed on a slice tester. A load of 300 N (1.64 MPa) is applied, and two speeds (50 and 100 rpm) are adopted. The CLPR running-in quality is characterized based on three parameters, i.e., the friction coefficient, contact resistance, and wear topography. Experimental results show that, compared with a non-textured surface, the three types of surface textures mentioned above improved the friction performance during running-in. The lubricant supply capacity of the dimple texture on the piston ring, as a mobile oil reservoir, is stronger than that of the groove texture on the cylinder liner serving as a static oil reservoir. By contrast, the wear resistance of the dimple texture, as a movable debris trap on the piston ring, is weaker than that of the groove texture on the cylinder liner, which serves as a static debris trap. It is demonstrated that the co-texture combines the advantages of dimples and groove textures. Compared with non-textured surfaces, the friction coefficient decreased the most at 100 rpm (44.5%), and the contact resistance improved the most at 50 rpm (352.9%). The coupling effect provides the surface with improved running-in quality by optimizing the tribological performance, particularly at the dead center. This study provides guidance for the tribological design and manufacturing of CLPR in marine diesel engines.


2021 ◽  
Author(s):  
Seiya Watanabe ◽  
Eri Kodama ◽  
Chiharu Tadokoro ◽  
Keita Sakakibara ◽  
Ken Nakano ◽  
...  

Abstract Concentrated polymer brushes (CPBs) are promising soft-material coatings for improving tribological properties under severe sliding conditions, even in the macroscopic scale. Therefore, they are expected to be applied to mechanical sliding components. However, the durability of CPBs has remained challenging for industrial applications. Previous studies revealed that applying a groove texture to the CPB substrate is effective in improving the durability of CPBs. In order to achieve further improvement of durability of CPBs, we attempted to apply the periodical structure, which is a microfabricated structure corresponding to a surface roughness 0.02 μm, whereas the groove texture applied in previous studies has widths and depths in micrometres. In this study, the effect of the nano-periodic structure in addition to the groove texture applied to the CPB substrate on the durability of CPB is investigated. The results demonstrate a significant improvement in the durability of CPBs by up to 90% compared with non-textured CPB when an appropriate nano-periodic structure is applied (i.e. a nano-periodic structure oriented parallel to the groove texture).


2021 ◽  
Author(s):  
Yuan Wei ◽  
Xu Liu ◽  
Simon S. Park ◽  
Robert Tomkowski ◽  
Andreas Archenti

Abstract Friction control is a vital green technology for reaching sustainable development goals, and surface texturing is effective and efficient at reducing friction. In this study, a novel preparation scheme involving dimpled groove texture is proposed. A pulsed laser marking system is used to make the dimpled grooves. Due to the unique design and process to make the proposed texture, texturing time can be greatly minimized compared to the conventional micro-groove texture technology. A computational fluid dynamics (CFD) model that considers the dimple surface angle is employed to aid the design of the texture and to predict the performance of the texture under certain conditions. Reciprocating sliding tests are preformed to evaluate the effects of the texture on friction reduction. Textures with different densities are used in the experiments. The results suggest that the dimpled groove reduces the coefficient of friction by 6% with less density distribution on the sample surface; nevertheless, denser densities may reverse the result. The simulation results suggest that the texture may perform better under pressure of the lubricant film in hydrodynamic conditions.


Author(s):  
Huihui Feng ◽  
Shuyun Jiang ◽  
Yanqin Shang-Guan

Water-lubricated bearings have attracted increasing attention in the field of high-speed machine tools for their low friction due to low viscosity. However, new problems, in particular, insufficient load capacity, are on the way. To the point, groove-textured journal bearing is adopted in this study. Aiming at investigating the effects of groove texture on high speed, water-lubricated, hydrodynamic journal bearing precisely, and thoroughly, three-dimensional computational fluid dynamic analyses considering cavitation and turbulence are undertaken to assess the tribological performances of the bearing. To reduce the amount of three-dimensional modeling and meshing work, mesh deformation is presented. The numerical results are compared with experiments to verify the validity of the present models and calculation procedures. Pressure distribution, load capacity, and friction of groove-textured water-lubricated journal bearing are analyzed with respect to operating conditions and geometric parameters. Comparisons between groove-textured water-lubricated journal bearing and smooth bearing are carried out to find out the influence of groove texture. It is found that the groove texture can achieve a remarkable improvement of load capacity at a smaller eccentricity ratio and higher rotary speed. The load capacity is affected by the combined effects of groove depth, width, and length. However, generally, the friction force of water-lubricated journal bearing is slightly influenced by groove texture. Results can provide theoretical guidance for the optimal design of groove-textured water-lubricated journal bearing under different operating parameters.


2020 ◽  
Vol 49 (1) ◽  
pp. 394-406 ◽  
Author(s):  
Zonghuan Wang ◽  
Yibing Wu ◽  
Yang Xiang ◽  
Marie Beatrix Kruth ◽  
Peng Wei ◽  
...  

Author(s):  
Na Zhang ◽  
Fazhan Yang ◽  
Fulin Jiang ◽  
Guohua Liu

Surface texturing has become a potential method to obtain a low friction coefficient under dry/lubricated conditions for different mechanical product surfaces. The mechanism of friction and wear reduction from a micro-texture on the surface of cemented carbide cutting tools was investigated by dry cutting a titanium alloy. Three kinds of micro-textures, namely, line, sinusoidal and rhombic grooves, with different area occupancy rates were produced by a laser on the cemented carbide surface. Experiments and finite element simulation of ABAQUS were used to investigate the tribological characteristics of micro-textured cemented carbide. The results indicated that the line-textured cemented carbide with an area occupancy rate of 10% showed a low friction coefficient of 0.076, which is approximately 34% of the non-textured sample. Few adhesives appeared on the textured surface, while a large number of adhesives were attached to the smooth surface after 30 min of dry friction between the cemented carbide and the titanium alloy balls. Moreover, among the three textures, the line-groove texture has the smallest friction coefficient and a good anti-wear effect. The results show that the existence of a groove texture can effectively reserve the wear debris, reduce the bond wear and weaken the furrow effect.


2019 ◽  
Vol 72 (3) ◽  
pp. 465-471
Author(s):  
Chao Zhen Yang ◽  
Zhiwei Guo ◽  
Changkun Xu

Purpose Frictions in cylinder liner-piston ring often cause an inevitable loss of energy loss in the diesel engine. This study aims at evaluating the effect of depths in the cylinder liner groove texture on friction, wear and sealing performances. Design/methodology/approach Five depths of groove texture cylinder liners (50, 100, 150, 200, 250 µm) were fabricated, and experiments were carried out using a special-purpose diesel engine tester. Comparative analyses of cylinder liner contact resistances, piston ring wear losses and surface appearances were conducted with respect to different surface textures and applied loads. Findings Under no-load conditions, the cylinder liner with a 100 deep thread groove can significantly improve sealing and optimize its lubrication performance. On the other hand, the sealing is highly correlated with the depth of groove and the load within the cylinder liner. Under loaded conditions, the thread groove has less effect on the sealing performance. Originality/value The findings can provide feasible basis for the tribological design and production of diesel engines.


2019 ◽  
Vol 72 (5) ◽  
pp. 581-588
Author(s):  
Jiazhi Miao ◽  
Yongqing Li ◽  
Xiang Rao ◽  
Libao Zhu ◽  
Zhiwei Guo ◽  
...  

Purpose The emission from marine engines has a crucial effect on energy economy and environment pollution. One of the effective emission reduction schemes is to minimize the friction loss of main friction pairs such as cylinder liner-piston ring (CLPR). Micro-groove textures were designed to accomplish this aim. Design/methodology/approach The authors experimentally investigated the effects of micro-groove textures at different cylinder liner positions. The micro-groove texture was fabricated on samples by chemical etching and cut from the real CLPR pair. Sliding contact tests were conducted by a reciprocation test apparatus. Findings The average friction coefficient of grooves at 30° inclination were reduced up to 58.22% and produced better tribological behavior at most conditions. The operating condition was the critical factor that determined the optimum texture pattern. The surface morphology indicated that textures could produce smoother surfaces and less scratches as compared with the untextured surface. Originality/value Inclined grooves and V-grooves were designed and applied to real CLPR pairs. The knowledge obtained in this study will lead to practical basis for tribological design and manufacturing of CLPR pair in marine diesel engines.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1155 ◽  
Author(s):  
Junyuan Huang ◽  
Songbo Wei ◽  
Lixin Zhang ◽  
Yingying Yang ◽  
Song Yang ◽  
...  

The superhydrophobic surface can change the friction property of the material, reduce the adhesion of the friction interface, and produce a certain slip, thereby reducing the friction coefficient. The laser has high energy, high density, and is especially suitable for the surface treatment of materials. The laser surface texturing is a good way to construct superhydrophobic surfaces. The experiment uses a nanosecond pulse laser to construct the groove texture on the nickel surface. The contact area between the air and the droplets retained on the rough surface is increased, effectively preventing the water droplets from entering the gully of the surface microstructure, reducing the water droplets and the solid surface. The contact area ultimately makes the surface exhibit excellent superhydrophobicity. A superhydrophobic nickel surface having an apparent contact angle of water (ACAW) of 160° and a sliding angle (SA) of less than 10° was prepared. The MM-W1B vertical universal friction and wear tester was used to test the groove texture samples with different depths. The surface texture can capture the wear debris generated by the wear and store the lubricant, which is beneficial to the formation of fluid dynamic pressure lubrication and improve the load. The friction coefficient is reduced from 0.65 of the unprocessed surfaces to 0.25 after the texturing, and the friction performance is greatly improved.


Sign in / Sign up

Export Citation Format

Share Document