Multi-scale surface patterning – an approach to control friction and lubricant migration in lubricated systems

2019 ◽  
Vol 71 (8) ◽  
pp. 1007-1016 ◽  
Author(s):  
Philipp G. Grützmacher ◽  
Andreas Rosenkranz ◽  
Adam Szurdak ◽  
Markus Grüber ◽  
Carsten Gachot ◽  
...  

Purpose The paper aims to investigate the possibilities to control friction in lubricated systems by surface patterning, making use of a multi-scale approach. Surface patterns inside the tribological contact zone tend to directly reduce friction, whereas surface patterns located in the close proximity of the contact area can improve the tribological performance by avoiding lubricant starvation and migration. Finally, optimized surface patterns were identified by preliminary laboratory tests and transferred to a journal bearing, thus testing them under more realistic conditions. Design/methodology/approach Surface patterns on a large scale (depth > 10 µm) were fabricated by micro- and roller-coining, whereas surface patterns on a small scale (depth < 2 µm) were produced by direct laser interference patterning. The combination of both techniques resulted in multi-scale surface patterns. Tribologically beneficial surface patterns (verified in ball-on-disk laboratory tests) were transferred onto a journal bearing’s shaft and tested on a special test-rig. To characterize the lubricant spreading behavior, a new test-rig was designed, which allowed for the study of the lubricant’s motion on patterned surfaces under the influence of a precisely controlled temperature gradient. Findings All tested patterns accounted for a pronounced friction reduction and/or an increase in oil film lifetime. The results from the preliminary laboratory tests matched well, with results from the journal bearing test-rig, both tests showing a maximum friction reduction by a factor of 3-4. Numerical investigations, as well as experiments, have shown the possibility to actively guide lubricant over patterned surfaces. Smaller periodicities, as well as greater structural depths and widths, led to a more pronounced anisotropic spreading and/or greater spreading velocities. Multi-scale surfaces demonstrated the strongest effects regarding the lubricant’s spreading behavior. Originality/value Friction, as well as lubricant migration, can be successfully controlled by using micro-coined, laser-patterned and/or multi-scale surfaces. To the best of the authors’ knowledge, the study demonstrates for the first time the unique possibility to transfer results obtained in laboratory tests to a real machine component.

2018 ◽  
Vol 150 ◽  
pp. 55-63 ◽  
Author(s):  
Philipp G. Grützmacher ◽  
Andreas Rosenkranz ◽  
Adam Szurdak ◽  
Carsten Gachot ◽  
Gerhard Hirt ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Andreas Schwarz ◽  
Martin Ebner ◽  
Thomas Lohner ◽  
Karsten Stahl ◽  
Kirsten Bobzin ◽  
...  

Purpose This paper aims to address the influence of diamond-like carbon (DLC) coatings on the frictional power loss of spur gears. It shows potentials for friction and bulk temperature reduction in industrial use. From a scientific point of view, the thermal insulation effect on fluid friction is addressed, which lowers viscosity in the gear contact due to increasing contact temperature. Design/methodology/approach Thermal insulation effect is analyzed in detail by means of the heat balance and micro thermal network of thermal elastohydrodynamic lubrication contacts. Preliminary results at a twin-disk test rig are summarized to categorize friction and bulk temperature reduction by DLC coatings. Based on experiments at a gear efficiency test rig, the frictional power losses and bulk temperatures of DLC-coated gears are investigated, whereby load, speed, oil temperature and coatings are varied. Findings Experimental investigations at the gear efficiency test rig showed friction and bulk temperature reduction for all operating conditions of DLC-coated gears compared to uncoated gears. This effect was most pronounced for high load and high speed. A reduction of the mean gear coefficient of friction on average 25% and maximum 55% was found. A maximum reduction of bulk temperature of 15% was observed. Practical implications DLC-coated gears show a high potential for reducing friction and improving load-carrying capacity. However, the industrial implementation is restrained by the limited durability of coatings on gear flanks. Therefore, a further and overall consideration of key durability factors such as substrate material, pretreatment, coating parameters and gear geometry is necessary. Originality/value Thermal insulation effect of DLC coatings was shown by theoretical analyses and experimental investigations at model test rigs. Although trial tests on gears were conducted in literature, this study proves the friction reduction by DLC-coated gears for the first time systematically in terms of various operating conditions and coatings. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0257/


2020 ◽  
Vol 143 ◽  
pp. 106041 ◽  
Author(s):  
Florian König ◽  
Andreas Rosenkranz ◽  
Philipp G. Grützmacher ◽  
Frank Mücklich ◽  
Georg Jacobs

2018 ◽  
Vol 127 ◽  
pp. 500-508 ◽  
Author(s):  
Philipp G. Grützmacher ◽  
Andreas Rosenkranz ◽  
Adam Szurdak ◽  
Florian König ◽  
Georg Jacobs ◽  
...  

2017 ◽  
Vol 37 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Haluk Ay ◽  
Anthony Luscher ◽  
Carolyn Sommerich

Purpose The purpose of this study is to design and develop a testing device to simulate interaction between human hand–arm dynamics, right-angle (RA) computer-controlled power torque tools and joint-tightening task-related variables. Design/methodology/approach The testing rig can simulate a variety of tools, tasks and operator conditions. The device includes custom data-acquisition electronics and graphical user interface-based software. The simulation of the human hand–arm dynamics is based on the rig’s four-bar mechanism-based design and mechanical components that provide adjustable stiffness (via pneumatic cylinder) and mass (via plates) and non-adjustable damping. The stiffness and mass values used are based on an experimentally validated hand–arm model that includes a database of model parameters. This database is with respect to gender and working posture, corresponding to experienced tool operators from a prior study. Findings The rig measures tool handle force and displacement responses simultaneously. Peak force and displacement coefficients of determination (R2) between rig estimations and human testing measurements were 0.98 and 0.85, respectively, for the same set of tools, tasks and operator conditions. The rig also provides predicted tool operator acceptability ratings, using a data set from a prior study of discomfort in experienced operators during torque tool use. Research limitations/implications Deviations from linearity may influence handle force and displacement measurements. Stiction (Coulomb friction) in the overall rig, as well as in the air cylinder piston, is neglected. The rig’s mechanical damping is not adjustable, despite the fact that human hand–arm damping varies with respect to gender and working posture. Deviations from these assumptions may affect the correlation of the handle force and displacement measurements with those of human testing for the same tool, task and operator conditions. Practical implications This test rig will allow the rapid assessment of the ergonomic performance of DC torque tools, saving considerable time in lineside applications and reducing the risk of worker injury. DC torque tools are an extremely effective way of increasing production rate and improving torque accuracy. Being a complex dynamic system, however, the performance of DC torque tools varies in each application. Changes in worker mass, damping and stiffness, as well as joint stiffness and tool program, make each application unique. This test rig models all of these factors and allows quick assessment. Social implications The use of this tool test rig will help to identify and understand risk factors that contribute to musculoskeletal disorders (MSDs) associated with the use of torque tools. Tool operators are subjected to large impulsive handle reaction forces, as joint torque builds up while tightening a fastener. Repeated exposure to such forces is associated with muscle soreness, fatigue and physical stress which are also risk factors for upper extremity injuries (MSDs; e.g. tendinosis, myofascial pain). Eccentric exercise exertions are known to cause damage to muscle tissue in untrained individuals and affect subsequent performance. Originality/value The rig provides a novel means for quantitative, repeatable dynamic evaluation of RA powered torque tools and objective selection of tightening programs. Compared to current static tool assessment methods, dynamic testing provides a more realistic tool assessment relative to the tool operator’s experience. This may lead to improvements in tool or controller design and reduction in associated musculoskeletal discomfort in operators.


2018 ◽  
Vol 70 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Shuwen Wang ◽  
Feiyan Yan ◽  
Ao Chen

Purpose The purpose of this paper is to investigate the tribological effects of laser surface texturing (LST) and residual stress on functional surfaces. Design/methodology/approach Three different surface textures (circular dimple, elliptical dimple and groove) with two different textured area ratios (10 and 20 per cent) are designed and fabricated by a Picosecond Nd YAG Laser machine. The friction and wear performance of textured specimens is tested using a UMT-2 friction and wear testing machine in mixed lubrication. Findings Test results show that elliptical dimples exhibit the best performance in wear resistance, circular dimples in friction reduction and grooves in stabilization of friction. The surfaces with larger textured area density exhibit better performance in both friction reduction and wear resistance. The improved performance of LST is the coupled effect of surface texture and residual stress. Originality/value The findings of this study may provide guidance for optimal design of functional surface textures in reciprocating sliding contacts under mixed or hydrodynamic lubrication, which can be used in automotive and other industrial applications.


2016 ◽  
Vol 17 (3) ◽  
pp. 295-309 ◽  
Author(s):  
Theo Berger ◽  
Christian Fieberg

Purpose The purpose of this paper is to show how investors can incorporate the multi-scale nature of asset and factor returns into their portfolio decisions and to evaluate the out-of-sample performance of such strategies. Design/methodology/approach The authors decompose daily return series of common risk factors and of all stocks listed in the Dow Jones Industrial Index (DJI) from 2000 to 2015 into different time scales to separate short-term noise from long-run trends. Then, the authors apply various (multi-scale) factor models to determine variance-covariance matrices which are used for minimum variance portfolio selection. Finally, the portfolios are evaluated by their out-of-sample performance. Findings The authors find that portfolios which are constructed on variance-covariance matrices stemming from multi-scale factor models outperform portfolio allocations which do not take the multi-scale nature of asset and factor returns into account. Practical implications The results of this paper provide evidence that accounting for the multi-scale nature of return distributions in portfolio decisions might be a promising approach from a portfolio performance perspective. Originality/value The authors demonstrate how investors can incorporate the multi-scale nature of returns into their portfolio decisions by applying wavelet filter techniques.


2018 ◽  
Vol 70 (4) ◽  
pp. 789-804 ◽  
Author(s):  
M.M. Shahin ◽  
Mohammad Asaduzzaman Chowdhury ◽  
Md. Arefin Kowser ◽  
Uttam Kumar Debnath ◽  
M.H. Monir

Purpose The purposes of the present study are to ensure higher sustainability of journal bearings under different applied loads and to observe bearing performances such as elastic strain, total deformation and stress formation. Design/methodology/approach A journal bearing test rig was used to determine the effect of the applied load on the bearing friction, film thickness, lubricant film pressure, etc. A steady-state analysis was performed to obtain the bearing performance. Findings An efficient aspect ratio (L/D) range was obtained to increase the durability or the stability of the bearing while the bearing is in the working condition by using SAE 5W-30 oil. The results from the study were compared with previous studies in which different types of oil and water, such as Newtonian fluid (NF), magnetorheological fluid (MRF) and nonmagnetorheological fluid (NMRF), were used as the lubricant. To ensure a preferable aspect ratio range (0.25-0.50), a computational fluid dynamics (CFD) analysis was conducted by ANSYS; the results show a lower elastic strain and deformation within the preferable aspect ratio (0.25-0.50) rather than a higher aspect ratio using the SAE 5W-30 oil. Originality/value It is expected that the findings of this study will contribute to the improvement of the bearing design and the bearing lubricating system.


2019 ◽  
Vol 71 (8) ◽  
pp. 986-990 ◽  
Author(s):  
Stephan Tremmel ◽  
Max Marian ◽  
Michael Zahner ◽  
Sandro Wartzack ◽  
Marion Merklein

Purpose This paper aims to derive tailor-made microtextures for elastohydrodynamically lubricated (EHL) contacts under consideration of manufacturing possibilities. Design/methodology/approach Component tests were used for the evaluation of the influence of surface texturing on the friction behavior in the cam/tappet contact. Furthermore, the manufacturing possibilities and limitations of a combined μEDM and micro-coining process and the feasibility of integration into a forming process were studied. Finally, a methodology based on transient EHL simulations and a meta-model of optimal prognosis was exemplarily used for microtexture optimization. Findings It was found that surface texturing in EHL contacts with high amount of sliding is promising. Moreover, the combination of μEDM and micro coining and the integration into established production processes allow the manufacturing of microtextures with desirable structural parameters and sufficient accuracy. Originality/value This paper gives a holistic view on surface microtexturing over several phases of the product life cycle, from the design, over efficient manufacturing to application-related testing.


Sign in / Sign up

Export Citation Format

Share Document