Fuzzy overall equipment effectiveness and line performance measurement using artificial neural network

2019 ◽  
Vol 25 (2) ◽  
pp. 340-354 ◽  
Author(s):  
Mahsa Fekri Sari ◽  
Soroush Avakh Darestani

Purpose The overall equipment effectiveness (OEE) is a powerful metric in production as well as one of the methods in evaluating function for measuring productivity in the production process. In the existing method, measuring OEE is based on three main elements consisting availability, performance and quality. The purpose of this paper is to evaluate the recognized metrics of production: OEE and overall line effectiveness (OLE) by using smart systems techniques. Design/methodology/approach In this paper, to improve the calculative methods and productivity with three methods: measuring OEE using Mamdani fuzzy inference systems (FIS), measuring OEE using Sugeno FIS, and measuring OLE using FIS and artificial neural networks (ANNs) are proposed. Findings The proposed methodologies aim to decrease some weaknesses of OEE and OLE methods by exploiting intelligent system techniques, such as FIS and ANNs. In particular, this research will solve the following issues that occur in manual and automatic data gathering. This technique is an effective way of measuring OEE and OLE with regard to different weights of losses as well as difference in the weight of the machines. In addition, it allows the operator’s knowledge to take a part in the measurement using uncertain input and output with implementation of linguistic terms. The presented method is the details and capabilities of those methods in various tested scenarios, and the results have been fully analyzed. Originality/value In relation to other methodologies, it allows the operator’s knowledge to take part in the measurement using uncertain input and output with implementation of linguistic terms. The presented method is the details and capabilities of those methods in various tested scenarios, and the results have been fully analyzed.

Author(s):  
Soraya Masthura Hasan ◽  
T Iqbal Faridiansyah

Mosque architectural design is based on Islamic culture as an approach to objects and products from the Islamic community by looking at their suitability and values and basic principles of Islam that explore more creative and innovative ideas. The purpose of this system is to help the team and the community in seeing the best mosque in the top order so that the system can be used as a reference for the team and the community. The variables used in the selection of modern mosques include facilities and infrastructure, building structure, roof structure, mosque area, level of security and facilities. The system model used is a fuzzy promethee model that is used for the modern mosque selection process. Fuzzy inference assessment is used to determine the value of each variable so that the value remains at normal limits. Fuzzy values will then be included in promethee assessment aspects. The highest promethee ranking results will be made a priority for the best mosque ranking. This fuzzy inference system and promethee system can help the management team and the community in determining the selection of modern mosques in aceh in accordance with modern mosque architecture. Intelligent System Modeling System In Determining Modern Mosque Architecture in the City of Aceh, this building will be web based so that all elements of society can see the best mosque in Aceh by being assessed by all elements of modern mosque architecture.Keywords: Fuzzy inference system, Promethe, Option of  Masjid


2021 ◽  
pp. 089270572110130
Author(s):  
Gökçe Özden ◽  
Mustafa Özgür Öteyaka ◽  
Francisco Mata Cabrera

Polyetheretherketone (PEEK) and its composites are commonly used in the industry. Materials with PEEK are widely used in aeronautical, automotive, mechanical, medical, robotic and biomechanical applications due to superior properties, such as high-temperature work, better chemical resistance, lightweight, good absorbance of energy and high strength. To enhance the tribological and mechanical properties of unreinforced PEEK, short fibers are added to the matrix. In this study, Artificial Neural Networks (ANNs) and the Adaptive-Neural Fuzzy Inference System (ANFIS) are employed to predict the cutting forces during the machining operation of unreinforced and reinforced PEEK with30 v/v% carbon fiber and 30 v/v% glass fiber machining. The cutting speed, feed rate, material type, and cutting tools are defined as input parameters, and the cutting force is defined as the system output. The experimental results and test results that are predicted using the ANN and ANFIS models are compared in terms of the coefficient of determination ( R2) and mean absolute percentage error. The test results reveal that the ANFIS and ANN models provide good prediction accuracy and are convenient for predicting the cutting forces in the turning operation of PEEK.


2021 ◽  
Vol 11 (9) ◽  
pp. 3997
Author(s):  
Woraphon Yamaka ◽  
Rungrapee Phadkantha ◽  
Paravee Maneejuk

As the conventional models for time series forecasting often use single-valued data (e.g., closing daily price data or the end of the day data), a large amount of information during the day is neglected. Traditionally, the fixed reference points from intervals, such as midpoints, ranges, and lower and upper bounds, are generally considered to build the models. However, as different datasets provide different information in intervals and may exhibit nonlinear behavior, conventional models cannot be effectively implemented and may not be guaranteed to provide accurate results. To address these problems, we propose the artificial neural network with convex combination (ANN-CC) model for interval-valued data. The convex combination method provides a flexible way to explore the best reference points from both input and output variables. These reference points were then used to build the nonlinear ANN model. Both simulation and real application studies are conducted to evaluate the accuracy of the proposed forecasting ANN-CC model. Our model was also compared with traditional linear regression forecasting (information-theoretic method, parametrized approach center and range) and conventional ANN models for interval-valued data prediction (regularized ANN-LU and ANN-Center). The simulation results show that the proposed ANN-CC model is a suitable alternative to interval-valued data forecasting because it provides the lowest forecasting error in both linear and nonlinear relationships between the input and output data. Furthermore, empirical results on two datasets also confirmed that the proposed ANN-CC model outperformed the conventional models.


2017 ◽  
Vol 10 (2) ◽  
pp. 166-182 ◽  
Author(s):  
Shabia Shabir Khan ◽  
S.M.K. Quadri

Purpose As far as the treatment of most complex issues in the design is concerned, approaches based on classical artificial intelligence are inferior compared to the ones based on computational intelligence, particularly this involves dealing with vagueness, multi-objectivity and good amount of possible solutions. In practical applications, computational techniques have given best results and the research in this field is continuously growing. The purpose of this paper is to search for a general and effective intelligent tool for prediction of patient survival after surgery. The present study involves the construction of such intelligent computational models using different configurations, including data partitioning techniques that have been experimentally evaluated by applying them over realistic medical data set for the prediction of survival in pancreatic cancer patients. Design/methodology/approach On the basis of the experiments and research performed over the data belonging to various fields using different intelligent tools, the authors infer that combining or integrating the qualification aspects of fuzzy inference system and quantification aspects of artificial neural network can prove an efficient and better model for prediction. The authors have constructed three soft computing-based adaptive neuro-fuzzy inference system (ANFIS) models with different configurations and data partitioning techniques with an aim to search capable predictive tools that could deal with nonlinear and complex data. After evaluating the models over three shuffles of data (training set, test set and full set), the performances were compared in order to find the best design for prediction of patient survival after surgery. The construction and implementation of models have been performed using MATLAB simulator. Findings On applying the hybrid intelligent neuro-fuzzy models with different configurations, the authors were able to find its advantage in predicting the survival of patients with pancreatic cancer. Experimental results and comparison between the constructed models conclude that ANFIS with Fuzzy C-means (FCM) partitioning model provides better accuracy in predicting the class with lowest mean square error (MSE) value. Apart from MSE value, other evaluation measure values for FCM partitioning prove to be better than the rest of the models. Therefore, the results demonstrate that the model can be applied to other biomedicine and engineering fields dealing with different complex issues related to imprecision and uncertainty. Originality/value The originality of paper includes framework showing two-way flow for fuzzy system construction which is further used by the authors in designing the three simulation models with different configurations, including the partitioning methods for prediction of patient survival after surgery. Several experiments were carried out using different shuffles of data to validate the parameters of the model. The performances of the models were compared using various evaluation measures such as MSE.


2015 ◽  
Vol 5 (2) ◽  
pp. 194-205 ◽  
Author(s):  
Scarlat Emil ◽  
Virginia Mărăcine

Purpose – The purpose of this paper is to discuss how tacit and explicit knowledge determine grey knowledge and how these are stimulated through interactions within networks, forming the grey hybrid intelligent systems (HISs). The feedback processes and mechanisms between internal and external knowledge determine the apparition of grey knowledge into an intelligent system (IS). The extension of ISs is determined by the ubiquity of the internet but, in our framework, the grey knowledge flows assure the viability and effectiveness of these systems. Design/methodology/approach – Some characteristics of the Hybrid Intelligent Knowledge Systems are put forward along with a series of models of hybrid computational intelligence architectures. More, relevant examples from the literature related to the hybrid systems architectures are presented, underlying their main advantages and disadvantages. Findings – Due to the lack of a common framework it remains often difficult to compare the various HISs conceptually and evaluate their performance comparatively. Different applications in different areas are needed for establishing the best combinations between models that are designed using grey, fuzzy, neural network, genetic, evolutionist and other methods. But all these systems are knowledge dependent, the main flow that is used in all parts of every kind of system being the knowledge. Grey knowledge is an important part of the real systems and the study of its proprieties using the methods and techniques of grey system theory remains an important direction of the researches. Originality/value – The paper discusses the differences among the three types of knowledge and how they and the grey systems theory can be used in different hybrid architectures.


Sign in / Sign up

Export Citation Format

Share Document