Influence of elevated temperature on alkali-activated ground granulated blast furnace slag concrete

2019 ◽  
Vol 11 (2) ◽  
pp. 247-260
Author(s):  
Virendra Kumar ◽  
Amit Kumar ◽  
Brajkishor Prasad

Purpose This paper aims to present an experimental investigation on the performances of alkali-activated slag (AAS) concrete and Portland slag cement (PSC) concrete under the influence of elevated temperature. In the present study, the alkali-activated binder contains 85% of ground granulated blast furnace slag (GGBFS) and 15% of powder blended as chemical activators. Design/methodology/approach For the purpose, standard size of cube, cylinder and prism have been cast for a designed mix of concrete. The AAS concrete specimens were kept for water as well as air curing. After attaining the maturity of 28 days, the samples were first exposed to different elevated temperatures, i.e. 100°C, 200°C, 300°C, 400°C, 500°C, 600°C, 700°C and 800°C. Later on, the tests were conducted on these samples to find the change in weight and the residual strength of the concrete. Findings After 500°C exposure, a considerable amount of the strength loss has been observed for AAS concrete. It has been evaluated that the performance of AAS concrete is better than that of the PSC concrete at elevated temperature. Research limitations/implications The present research work is being applied on the material for which the experimental result has been obtained. Practical implications The author has tried to develop a new type of binder by using steel industry waste material and then tested at elevated temperature to sustain at high temperatures. Social implications This research may give a social impact for developing mass housing project with a lower cost than that of using a conventional binder, i.e. cement. Originality/value A new type of binder material is being developed.

2016 ◽  
Vol 249 ◽  
pp. 3-7 ◽  
Author(s):  
Vlastimil Bílek ◽  
Jan Hurta ◽  
Petra Done ◽  
Libor Zidek ◽  
Tomas Zajdlik

Hybrid cements represent a relatively new type of binders which combine some of the advantages of Ordinary Portland Cement (OPC), the application of mineral admixtures and alkali activation. Hybrid cements represent blends containing a low portion of OPC and a high proportion of mineral additions (such as blast furnace slag, fly ash, metakaolin ....). The paper is focused on the study of properties of mortars prepared from hybrid cements. Mortars with hybrid cements were prepared for an evaluation of the effects of the dosage and the composition of alkali activator, the dosage of OPC and the ratio between ground granulated blast furnace slag and fly ash. The results make it possible to optimize the composition of hybrid alkali activated concretes.


2016 ◽  
Vol 865 ◽  
pp. 107-113 ◽  
Author(s):  
Pavel Mec ◽  
Jana Boháčová ◽  
Josef Koňařík

Alkali activated systems are materials formed by alkali-activation of latent hydraulic or pozzolanic materials. The outcome is a polymeric structure with properties comparable to materials based on cement.The principle of the experiment is to compare selected properties of alkali-activated materials based on blast furnace slag and using various types of activator (sodium water glass, potassium water glass, DESIL AL and sodium metasilicate) to binders based on white and Portland cements of the highest quality. The samples were left for one year in environments simulating the conditions in the interior and exterior. Selected physical-mechanical properties were evaluated and compared.


2011 ◽  
Vol 287-290 ◽  
pp. 1275-1279
Author(s):  
Yong Jia He ◽  
Lin Nu Lu ◽  
Shu Guang Hu

Compound binding material was prepared by the alkali activation of metakaolin and ground granulated blast furnace slag. Hydration product components, microstructure and mechanical properties of the hardened paste were investigated by IR, XRD, SEM, MIP, and compressive strength measurement. Results indicated that hydration products included C-S-H and geopolymer, and both of them were amorphous although there were differences in their structure and morphology. When the dosage of slag was less than 50%, the compressive strength of hardened paste increased as the dosage increased, which was mainly because C-S-H produced by the reaction of GGBFS and alkali filled void in geopolymer phase, and part of unreacted slag particles acting as microaggregate to prevent from extension of microcrack in the hardened paste, so the porosity of hardened paste decreased and compressive strength increased.


Sign in / Sign up

Export Citation Format

Share Document