Experimental Study on Compound Binding Material of Alkali Activated Metakaolin and Ground Granulated Blast Furnace Slag

2011 ◽  
Vol 287-290 ◽  
pp. 1275-1279
Author(s):  
Yong Jia He ◽  
Lin Nu Lu ◽  
Shu Guang Hu

Compound binding material was prepared by the alkali activation of metakaolin and ground granulated blast furnace slag. Hydration product components, microstructure and mechanical properties of the hardened paste were investigated by IR, XRD, SEM, MIP, and compressive strength measurement. Results indicated that hydration products included C-S-H and geopolymer, and both of them were amorphous although there were differences in their structure and morphology. When the dosage of slag was less than 50%, the compressive strength of hardened paste increased as the dosage increased, which was mainly because C-S-H produced by the reaction of GGBFS and alkali filled void in geopolymer phase, and part of unreacted slag particles acting as microaggregate to prevent from extension of microcrack in the hardened paste, so the porosity of hardened paste decreased and compressive strength increased.

2010 ◽  
Vol 158 ◽  
pp. 1-11 ◽  
Author(s):  
Zi Qiao Jin ◽  
Xian Jun Lu ◽  
Shu Gang Hu

In order to stimulate the potential cementitious property of granulated blast furnace slag (GBFS), the ground GBFS sample (Wei Fang Iron and Steel Corporation, China) was activated by lime and gypsum under different dosages. The results showed that lime is an effective activator for the slag, and the optimum dosage of lime is about 10% (w/w) of the slag. At the optimum dosage of lime, the 28 days compressive strength of the lime-slag paste is higher than that of 32.5 ordinary Portland cement (OPC). But, the early age strength (3 and 7 days compressive strength) of the lime-slag paste is lower than that of the OPC. Addition of gypsum can effectively improve the early age strength of the lime-slag paste. At the ratio of gypsum:lime:slag of 8.2:9.2:82.6 (w/w), both the early and long-term compressive strengths of the gypsum-lime-slag paste are higher than that of the OPC. According to XRD, TG-DTA and SEM detections of the hydration products of the lime-slag paste, the gypsum-lime-slag paste and the OPC paste, it reveals that the hydration process of the GBFS-based cementitious material is different from the ordinary Portland cement and the presence of ettringite (AFt) contributes to the early age strength of the pastes. The major hydration product of the OPC paste (<7 days) were measured as ettringite (AFt), but the AFt phase was not detected in the hydration product of the lime-slag paste and the major hydration product of the lime-slag paste was determined as amorphous CSH gel. However, AFt was detected in the hydration products of the gypsum-lime-slag paste in the early stages of hydration, and the formation of AFt is favorable for the early strength improvement of the material.


2016 ◽  
Vol 865 ◽  
pp. 107-113 ◽  
Author(s):  
Pavel Mec ◽  
Jana Boháčová ◽  
Josef Koňařík

Alkali activated systems are materials formed by alkali-activation of latent hydraulic or pozzolanic materials. The outcome is a polymeric structure with properties comparable to materials based on cement.The principle of the experiment is to compare selected properties of alkali-activated materials based on blast furnace slag and using various types of activator (sodium water glass, potassium water glass, DESIL AL and sodium metasilicate) to binders based on white and Portland cements of the highest quality. The samples were left for one year in environments simulating the conditions in the interior and exterior. Selected physical-mechanical properties were evaluated and compared.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2286
Author(s):  
Taewan Kim ◽  
Sungnam Hong ◽  
Choonghyun Kang

This study investigates the characteristics of alkali-activated slag cement using aluminium sulphate (ALS) as an activator. The alkalis NaOH and Na2SiO3 were used as additional activators (denoted by alkali) at 5% and 10% of the weight of the ground granulated blast furnace slag (GGBFS). Three types of activators were considered. The first was when ALS was used alone. For the second, ALS and 5% alkali were used together. The third was when ALS and 10% alkali were used. ALS was used at concentrations of 2%, 4%, 6%, 8%, and 10% based on binder weight. Experimental results show that when ALS was used as a sole activator, the activity of GGBFS was low and its strength was below 1 MPa. However, compressive strength was improved when 5% or 10% alkali and ALS were used at the same time. This was effective at improving mechanical and microstructural performance when used with an additional activator capable of forming a more alkaline environment than using ALS as a sole activator.


2015 ◽  
Vol 754-755 ◽  
pp. 300-304 ◽  
Author(s):  
Aimi Noorliyana Hashim ◽  
Kamarudin Hussin ◽  
Noorzahan Begum ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamrosni Abdul Razak ◽  
...  

Energy saving in building technology is among the most critical problems in the world. Thus it is a need to develop sustainable alternatives to conventional concrete utilizing more environmental friendly materials. One of the possibilities to work out is the massive usage of industrial wastes like ground granulated blast furnace slag (GGBS) to turn them to useful environmental friendly and technologically advantageous cementitious materials. In this study, ground granulated blast furnace slag (GGBS) is used to produce of alkali activated slag (AAS) mortar with the effect of alkaline activator concentration. Alkali activated slag (AAS) mortar is accelerated using alkaline solution of sodium silicate mixed with sodium hydroxide. The fixed ratio of sodium silicate to sodium hydroxide is 1.7 and the concentration of sodium hydroxide is varied from 6M to 12M. Concentration of 10M NaOH promotes the best properties of mortar by achieving the greatest compressive strength. Substitution of mineral admixture also influences strength performance of AAS mortars. The mortar with 20% calcium carbonate demonstrates the maximum compressive strength. The used of alkaline activation system is the best method to prepare industrial byproduct concrete. Moreover, alkali activated product itself gains superior properties which lead to the system become the most interesting method to produce sustainable concrete.


2018 ◽  
Vol 20 (2) ◽  
pp. 208-215

The paper presents a laboratory study of concrete mixes based on the alkali-activation of an industrial by-product, ground granulated blast furnace slag (GGBS). A number of factors potentially affecting the resulting concrete quality in terms of workability and strengths were investigated (namely activator type, molarity, curing conditions and times). The statistical significance of the effect of these factors was supported by ANOVA. Higher workability and strengths (with lower activator concentrations) were obtained for KOH containing mixes. Curing at constant moisture and ambient temperature was successful for most alkaline activators and mixes, which showed good concrete strengths at all curing times; when Na2SiO3 was used in addition to NaOH or KOH activators of moderate to high molarity, strengths exceeded those of Ordinary Portland Cement (CEM-I) concrete of a similar water/cement ratio.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 337 ◽  
Author(s):  
Juan Cosa ◽  
Lourdes Soriano ◽  
María Borrachero ◽  
Lucía Reig ◽  
Jordi Payá ◽  
...  

The properties of a binder developed by the alkali-activation of a single waste material can improve when it is blended with different industrial by-products. This research aimed to investigate the influence of blast furnace slag (BFS) and fly ash (FA) (0–50 wt %) on the microstructure and compressive strength of alkali-activated ceramic sanitaryware (CSW). 4 wt % Ca(OH)2 was added to the CSW/FA blended samples and, given the high calcium content of BFS, the influence of BFS was analyzed with and without adding Ca(OH)2. Mortars were used to assess the compressive strength of the blended cements, and their microstructure was investigated in pastes by X-ray diffraction, thermogravimetry, and field emission scanning electron microscopy. All the samples were cured at 20 °C for 28 and 90 days and at 65 °C for 7 days. The results show that the partial replacement of CSW with BFS or FA allowed CSW to be activated at 20 °C. The CSW/BFS systems exhibited better mechanical properties than the CSW/FA blended mortars, so that maximum strength values of 54.3 MPa and 29.4 MPa were obtained in the samples prepared with 50 wt % BFS and FA, respectively, cured at 20 °C for 90 days.


2011 ◽  
Vol 287-290 ◽  
pp. 916-921
Author(s):  
Kyung Taek Koh ◽  
Gum Sung Ryu ◽  
Si Hwan Kim ◽  
Jang Hwa Lee

This paper examines the effects of the mixture ratio of fly ash/slag, the type of alkaline activators and curing conditions on the workability, compressive strength and microstructure of cementless alkali-activated mortar. The investigation showed that the mixture ratio of fly ash/slag and the type of alkaline activator have significant influence on the workability and strength, whereas the curing temperature has relatively poor effect. An alkali-activated mortar using a binder composed of 50% of fly ash and 50% of granulated blast furnace slag and alkaline activator made of 9M NaOH and sodium silicate in proportion of 1:1 is seen to be able to develop a compressive strength of 65 MPa at age of 28 days even when cured at ambient temperature of 20°C.


2016 ◽  
Vol 249 ◽  
pp. 3-7 ◽  
Author(s):  
Vlastimil Bílek ◽  
Jan Hurta ◽  
Petra Done ◽  
Libor Zidek ◽  
Tomas Zajdlik

Hybrid cements represent a relatively new type of binders which combine some of the advantages of Ordinary Portland Cement (OPC), the application of mineral admixtures and alkali activation. Hybrid cements represent blends containing a low portion of OPC and a high proportion of mineral additions (such as blast furnace slag, fly ash, metakaolin ....). The paper is focused on the study of properties of mortars prepared from hybrid cements. Mortars with hybrid cements were prepared for an evaluation of the effects of the dosage and the composition of alkali activator, the dosage of OPC and the ratio between ground granulated blast furnace slag and fly ash. The results make it possible to optimize the composition of hybrid alkali activated concretes.


2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.


Sign in / Sign up

Export Citation Format

Share Document