Fuzzy C-means based data envelopment analysis for mitigating the impact of units’ heterogeneity

Kybernetes ◽  
2016 ◽  
Vol 45 (3) ◽  
pp. 536-551 ◽  
Author(s):  
Seyed Hossein Razavi Hajiagha ◽  
Shide Sadat Hashemi ◽  
Hannan Amoozad Mahdiraji

Purpose – Data envelopment analysis (DEA) is a non-parametric model that is developed for evaluating the relative efficiency of a set of homogeneous decision-making units that each unit transforms multiple inputs into multiple outputs. However, usually the decision-making units are not completely similar. The purpose of this paper is to propose an algorithm for DEA applications when considered DMUs are non-homogeneous. Design/methodology/approach – To reach this aim, an algorithm is designed to mitigate the impact of heterogeneity on efficiency evaluation. Using fuzzy C-means algorithm, a fuzzy clustering is obtained for DMUs based on their inputs and outputs. Then, the fuzzy C-means based DEA approach is used for finding the efficiency of DMUs in different clusters. Finally, the different efficiencies of each DMU are aggregated based on the membership values of DMUs in clusters. Findings – Heterogeneity causes some positive impact on some DMUs while it has negative impact on other ones. The proposed method mitigates this undesirable impact and a different distribution of efficiency score is obtained that neglects this unintended impacts. Research limitations/implications – The proposed method can be applied in DEA applications with a large number of DMUs in different situations, where some of them enjoyed the good environmental conditions, while others suffered from bad conditions. Therefore, a better assessment of real performance can be obtained. Originality/value – The paper proposed a hybrid algorithm combination of fuzzy C-means clustering method with classic DEA models for the first time.

2021 ◽  
Vol 40 (1) ◽  
pp. 813-832
Author(s):  
Sajad Kazemi ◽  
Reza Kiani Mavi ◽  
Ali Emrouznejad ◽  
Neda Kiani Mavi

Data Envelopment Analysis (DEA) is the most popular mathematical approach to assess efficiency of decision-making units (DMUs). In complex organizations, DMUs face a heterogeneous condition regarding environmental factors which affect their efficiencies. When there are a large number of objects, non-homogeneity of DMUs significantly influences their efficiency scores that leads to unfair ranking of DMUs. The aim of this study is to deal with non-homogeneous DMUs by implementing a clustering technique for further efficiency analysis. This paper proposes a common set of weights (CSW) model with ideal point method to develop an identical weight vector for all DMUs. This study proposes a framework to measuring efficiency of complex organizations, such as banks, that have several operational styles or various objectives. The proposed framework helps managers and decision makers (1) to identify environmental components influencing the efficiency of DMUs, (2) to use a fuzzy equivalence relation approach proposed here to cluster the DMUs to homogenized groups, (3) to produce a common set of weights (CSWs) for all DMUs with the model developed here that considers fuzzy data within each cluster, and finally (4) to calculate the efficiency score and overall ranking of DMUs within each cluster.


2020 ◽  
Vol 54 (4) ◽  
pp. 551-582
Author(s):  
Jolly Puri ◽  
Meenu Verma

PurposeThis paper is focused on developing an integrated algorithmic approach named as data envelopment analysis and multicriteria decision-making (DEA-MCDM) for ranking decision-making units (DMUs) based on cross-efficiency technique and subjective preference(s) of the decision maker.Design/methodology/approachSelf-evaluation in data envelopment analysis (DEA) lacks in discrimination power among DMUs. To fix this, a cross-efficiency technique has been introduced that ranks DMUs based on peer-evaluation. Different cross-efficiency formulations such as aggressive and benevolent and neutral are available in the literature. The existing ranking approaches fail to incorporate subjective preference of “one” or “some” or “all” or “most” of the cross-efficiency evaluation formulations. Therefore, the integrated framework in this paper, based on DEA and multicriteria decision-making (MCDM), aims to present a ranking approach to incorporate different cross-efficiency formulations as well as subjective preference(s) of decision maker.FindingsThe proposed approach has an advantage that each of the aggressive, benevolent and neutral cross-efficiency formulations contribute to select the best alternative among the DMUs in a MCDM problem. Ordered weighted averaging (OWA) aggregation is applied to aggregate final cross-efficiencies and to achieve complete ranking of the DMUs. This new approach is further illustrated and compared with existing MCDM approaches like simple additive weighting (SAW) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to prove its validity in real situations.Research limitations/implicationsThe choice of cross-efficiency formulation(s) as per subjective preference of the decision maker and different orness levels lead to different aggregated scores and thus ranking of the DMUs accordingly. The proposed ranking approach is highly useful in real applications like R and D projects, flexible manufacturing systems, electricity distribution sector, banking industry, labor assignment and the economic environmental performances for ranking and benchmarking.Practical implicationsTo prove the practical applicability and robustness of the proposed integrated DEA-MCDM approach, it is applied to top twelve Indian banks in terms of three inputs and two outputs for the period 2018–2019. The findings of the study (1) ensure the impact of non-performing assets (NPAs) on the ranking of the selected banks and (2) are enormously valuable for the bank experts and policy makers to consider the impact of peer-evaluation and subjective preference(s) in formulating appropriate policies to improve performance and ranks of underperformed banks in competitive scenario.Originality/valueTo the best of the authors’ knowledge, this is the first study that has integrated both DEA and MCDM via OWA aggregation to present a ranking approach that can incorporate different cross-efficiency formulations and subjective preference(s) of the decision maker for ranking DMUs.


Author(s):  
B. Vittal ◽  
Raju Nellutla ◽  
M. Krishna Reddy

In banking system the evaluation of productivity and performance is the key factor among the fundamental concepts in management. For identify the potential performance of a bank efficiency is the parameter to evaluate effective banking system. To measure the efficiency of a bank selection of appropriate input-output variables is one of the most vital issues. The suitable identification of input-output variables helps to create and identify model in order to evaluate the efficiency and analysis. The Data Envelopment Analysis (DEA) is a mathematical approach used to measure the efficiency of identified Decision Making Units (DMUs). The DEA is a methodology for evaluating the relative efficiency of peer decision making units of identified input/output variables for the financial year 2018-19. In this study the basic DEA CCR, BCC models used for measure the efficiency of DMUs. In addition to these models for minimize the input excess and output shortfall Slack Based Measure (SBM) efficiency used. The SBM is a scalar measure which directly deals with slacks of input, output variables which help in obtain improved efficiency score compare with previous model. The result from the analysis is


Land ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Thomas Bournaris ◽  
George Vlontzos ◽  
Christina Moulogianni

Glasshouse farming is one of the most intensive types of production of agricultural products. Via this process, consumers have the ability to consume mainly off-season vegetables and farmers are able to reduce operational risks, due to their ability to control micro-climate conditions. This type of farming is quite competitive worldwide, this being the main reason for formulating and implementing assessment models measuring operational performance. The methodology used in this study is Data Envelopment Analysis (DEA), which has wide acceptance in agriculture, among other sectors of the economy. The production protocols of four different vegetables—cucumber, eggplant, pepper, and tomato—were evaluated. Acreage (m2), crop protection costs (€), fertilizers (€), labor (Hr/year), energy (€), and other costs (€) were used as inputs. The turnover of every production unit (€) was used as the output. Ninety-eight agricultural holdings participated in this survey. The dataset was obtained by face-to-face interviews. The main findings verify the existence of significant relative deficiencies (including a mean efficiency score of 0.87) as regards inputs usage, as well as considerably different efficiency scores among the different cultivations. The most efficient of these was the eggplant production protocol and the least efficient was that used for the tomato. The implementation of DEA verified its utility, providing incentives for continuing to use this methodology for improving land management decision making.


2002 ◽  
Vol 22 (2) ◽  
pp. 203-215 ◽  
Author(s):  
Annibal P. Sant'Anna

Probabilities and odds, derived from vectors of ranks, are here compared as measures of efficiency of decision-making units (DMUs). These measures are computed with the goal of providing preliminary information before starting a Data Envelopment Analysis (DEA) or the application of any other evaluation or composition of preferences methodology. Preferences, quality and productivity evaluations are usually measured with errors or subject to influence of other random disturbances. Reducing evaluations to ranks and treating the ranks as estimates of location parameters of random variables, we are able to compute the probability of each DMU being classified as the best according to the consumption of each input and the production of each output. Employing the probabilities of being the best as efficiency measures, we stretch distances between the most efficient units. We combine these partial probabilities in a global efficiency score determined in terms of proximity to the efficiency frontier.


2019 ◽  
Vol 31 (3) ◽  
pp. 367-385 ◽  
Author(s):  
Khosro Soleimani-Chamkhorami ◽  
Farhad Hosseinzadeh Lotfi ◽  
Gholamreza Jahanshahloo ◽  
Mohsen Rostamy-Malkhalifeh

Abstract Inverse (DEA) is an approach to estimate the expected input/output variation levels when the efficiency score reminds unchanged. Essentially, finding most efficient decision-making units (DMUs) or ranking units is an important problem in DEA. A new ranking system for ordering extreme efficient units based on inverse DEA is introduced in this article. In the adopted method, here the amount of required increment of inputs by increasing the outputs of the unit under evaluation is obtained through the proposed models. By obtaining these variations, this proposed methodology enables the researcher to rank the efficient DMUs in an appropriate manner. Through the analytical theorem, it is proved that suggested models here are feasible. These newly introduced models are validated through a data set of commercial banks and a numerical example.


2019 ◽  
Vol 27 (2) ◽  
pp. 695-707 ◽  
Author(s):  
Reza Farzipoor Saen ◽  
Seyed Shahrooz Seyedi Hosseini Nia

Purpose The purpose of this paper is to develop an inverse network data envelopment analysis (INDEA) model to solve resource allocation problems. Design/methodology/approach The authors estimate inputs’ variations based on outputs so that the efficiencies of decision-making unit under evaluation (DMUo) and other decision-making units (DMUs) are constant. Findings The new INDEA model is developed to allocate resources such that inputs are not increased while efficiency scores of all DMUs remain constant. Furthermore, the authors obtain new combinations of inputs and outputs, together with a growth in efficiency score of DMUo such that efficiency scores of other DMUs are not changed. A case study is provided. Originality/value This paper proposes INDEA model to estimate inputs (outputs) without changing efficiency scores of DMUs.


2019 ◽  
Vol 53 (2) ◽  
pp. 645-655 ◽  
Author(s):  
Gholam R. Amin ◽  
Amar Oukil

This paper discusses the impact of ganging decision making units (DMUs) on the cross-efficiency evaluation in data envelopment analysis (DEA). A group of DMUs are said to be ganging-together if the minimum and the maximum cross-efficiency scores they give to all other DMUs are identical. This study demonstrates that the ganging phenomenon can significantly influence the cross-efficiency evaluation in favour of some DMUs. To overcome this shortcoming, we propose a gangless cross-efficiency evaluation approach. The suggested method reduces the effect of ganging and generates a more diversified list of top performing units. An application to the Tehran stock market is used to show the benefits of gangless cross-evaluation.


2011 ◽  
Vol 50 (4II) ◽  
pp. 685-698
Author(s):  
Samina Khalil

This paper aims at measuring the relative efficiency of the most polluting industry in terms of water pollution in Pakistan. The textile processing is country‘s leading sub sector in textile manufacturing with regard to value added production, export, employment, and foreign exchange earnings. The data envelopment analysis technique is employed to estimate the relative efficiency of decision making units that uses several inputs to produce desirable and undesirable outputs. The efficiency scores of all manufacturing units exhibit the environmental consciousness of few producers is which may be due to state regulations to control pollution but overall the situation is far from satisfactory. Effective measures and instruments are still needed to check the rising pollution levels in water resources discharged by textile processing industry of the country. JEL classification: L67, Q53 Keywords: Data Envelopment Analysis (DEA), Decision Making Unit (DMU), Relative Efficiency, Undesirable Output


Sign in / Sign up

Export Citation Format

Share Document