Influence of the rotation on a generalized magneto-thermoelastic medium for three-phase-lag model

2015 ◽  
Vol 11 (2) ◽  
pp. 297-318 ◽  
Author(s):  
Samia M Said

Purpose – The purpose of this paper is to investigate the effect of rotation and a magnetic field on the wave propagation in a generalized thermoelastic problem for a medium with an internal heat source that is moving with a constant speed. Design/methodology/approach – The formulation is applied to a generalized thermoelastic problem based on the three-phase-lag model and Green-Naghdi theory without energy dissipation. The medium is a homogeneous isotropic thermoelastic in the half-space. Findings – The exact expressions of the displacement components, temperature, and stress components are obtained by using normal mode analysis. Originality/value – Comparisons are made with the results predicted by the two models in the absence and presence of a magnetic field as well as a rotation. A comparison also is made with the results predicted by the two models for two different values of an internal heat source.

2017 ◽  
Vol 13 (1) ◽  
pp. 83-99 ◽  
Author(s):  
Samia M. Said

Purpose The purpose of this paper is to investigate the effect of a hydrostatic initial stress and the gravity field on a fiber-reinforced thermoelastic medium with an internal heat source that is moving with a constant speed. Design/methodology/approach A general model of the equations of the formulation in the context of the three-phase-lag model and Green-Naghdi theory without energy dissipation. Findings The exact expressions for the displacement components, force stresses, and the thermal temperature for the thermal shock problem obtained by using normal mode analysis. Originality/value A comparison made between the results of the two models for different values of a hydrostatic initial stress as well as an internal heat source. Comparisons also made with the results of the two models in the absence and presence of the gravity field as well as the reinforcement.


2017 ◽  
Vol 13 (1) ◽  
pp. 122-134 ◽  
Author(s):  
Mohamed I.A. Othman ◽  
Yassmin D. Elmaklizi ◽  
Nehal T. Mansoure

Purpose The purpose of this paper is to investigate the propagation of plane waves in an isotropic elastic medium under the effect of rotation, magnetic field and temperature-dependent properties with two‐temperatures. Design/methodology/approach The problem has been solved analytically by using the normal mode analysis. Findings The numerical results are given and presented graphically when mechanical and thermal force are applied. Comparisons are made with the results predicted by the three-phase-lag (3PHL) model and dual-phase-lag model in the presence and absence of cases where the modulus of elasticity is independent of temperature. Originality/value In this work, the authors study the influence of rotation and magnetic field with two‐temperature on thermoelastic isotropic medium when the modulus of elasticity is taken as a linear function of reference temperature in the context of the 3PHL model. The numerical results for the field quantities are obtained and represented graphically.


2015 ◽  
Vol 11 (4) ◽  
pp. 544-557 ◽  
Author(s):  
Mohamed I. Othman ◽  
W. M. Hasona ◽  
Nehal T. Mansour

Purpose – The purpose of this paper is to introduce the Lord-Shulman (L-S), Green-Naghdi of type III (G-N III) and three phase lag (3PHL) theories to study the effect of a magnetic field on generalized thermoelastic medium with two temperature. Design/methodology/approach – The problem has been solved numerically by using the normal mode analysis. Findings – The problem is used to obtain the analytical expressions of the displacement components, force stress, thermodynamic temperature and conductive temperature. The numerical results are given and presented graphically thermal force is applied. Comparisons are made with the results predicted by 3PHL, G-N III and L-S in the presence and absence of magnetic field as well as two temperature. Originality/value – Generalized thermoelastic medium.


2016 ◽  
Vol 94 (4) ◽  
pp. 400-409 ◽  
Author(s):  
Kh. Lotfy

In this work, the dual-phase-lag (DPL) heat transfer model is introduced to study the problem of an isotropic generalized thermoelastic medium with an internal heat source that is moving with a constant speed. Thermal loading at the free surface of a semi-infinite semiconconducting medium coupled plasma waves with the effect of mechanical force during a photothermal process to study the effect of a gravity field. Harmonic wave analysis is used to obtain exact expressions for the considered variables, also the carrier density coefficients were obtained analytically. The variations of the considered variables through the horizontal distance are illustrated graphically under the effects of several parameters based on the DPL model. The results are discussed and depicted graphically.


2017 ◽  
Author(s):  
Izzati Khalidah Khalid ◽  
Nor Fadzillah Mohd Mokhtar ◽  
Zailan Siri ◽  
Zarina Bibi Ibrahim ◽  
Siti Salwa Abd Gani

2020 ◽  
Vol 30 (12) ◽  
pp. 5191-5207 ◽  
Author(s):  
Aatef Hobiny ◽  
Faris S. Alzahrani ◽  
Ibrahim Abbas

Purpose The purposes of this study, a generalized model for thermoelastic wave under three-phase lag (TPL) model is used to compute the increment of temperature, the components of displacement, the changes in volume fraction field and the stress components in a two-dimension porous medium. Design/methodology/approach By using Laplace-Fourier transformations with the eigen values methodologies, the analytical solutions of all physical variables are obtained. Findings The derived methods are estimated with numerical outcomes which are applied to the porous media in simplified geometry. Originality/value Finally, the outcomes are represented graphically to display the difference among the models of the TPL and the Green and Naghdi (GNIII) with and without energy dissipations.


2018 ◽  
Vol 23 (1) ◽  
pp. 5-21 ◽  
Author(s):  
P. Ailawalia ◽  
S. Budhiraja ◽  
J. Singh

AbstractThe purpose of this paper is to study the two dimensional deformation in a generalized thermoelastic medium with microtemperatures having an internal heat source subjected to a mechanical force. The force is acting along the interface of generalized thermoelastic half space and generalized thermoelastic half space with microtemperatures having an internal heat source. The normal mode analysis has been applied to obtain the exact expressions for the considered variables. The effect of internal heat source and microtemperatures on the above components has been depicted graphically.


Sign in / Sign up

Export Citation Format

Share Document