The effect of magnetic field on generalized thermoelastic medium with two temperature under three phase lag model

2015 ◽  
Vol 11 (4) ◽  
pp. 544-557 ◽  
Author(s):  
Mohamed I. Othman ◽  
W. M. Hasona ◽  
Nehal T. Mansour

Purpose – The purpose of this paper is to introduce the Lord-Shulman (L-S), Green-Naghdi of type III (G-N III) and three phase lag (3PHL) theories to study the effect of a magnetic field on generalized thermoelastic medium with two temperature. Design/methodology/approach – The problem has been solved numerically by using the normal mode analysis. Findings – The problem is used to obtain the analytical expressions of the displacement components, force stress, thermodynamic temperature and conductive temperature. The numerical results are given and presented graphically thermal force is applied. Comparisons are made with the results predicted by 3PHL, G-N III and L-S in the presence and absence of magnetic field as well as two temperature. Originality/value – Generalized thermoelastic medium.

2017 ◽  
Vol 2 (1) ◽  
pp. 259-270 ◽  
Author(s):  
Sarhan Y. Atwa ◽  
M. K. Ammar ◽  
Eman Ibrahim

AbstractThis paper is concerned on the distribution of a homogeneous isotropic elastic medium with diffusion under the effect of Three-phase-lag model. Normal mode analysis is used to express the exact expressions for temperature, displacements and stresses functions. Comparisons are made in the absence and presence of diffusion with some theories like Three-phase-lag and GNIII.


2019 ◽  
Vol 29 (12) ◽  
pp. 4788-4806 ◽  
Author(s):  
Mohamed I.A. Othman ◽  
Samia Said ◽  
Marin Marin

Purpose In the present paper, the three-phase-lag (3PHL) model, Green-Naghdi theory without energy dissipation (G-N II) and Green-Naghdi theory with energy dissipation (G-N III) are used to study the influence of the gravity field on a two-temperature fiber-reinforced thermoelastic medium. Design/methodology/approach The analytical expressions for the displacement components, the force stresses, the thermodynamic temperature and the conductive temperature are obtained in the physical domain by using normal mode analysis. Findings The variations of the considered variables with the horizontal distance are illustrated graphically. Some comparisons of the thermo-physical quantities are shown in the figures to study the effect of the gravity, the two-temperature parameter and the reinforcement. Also, the effect of time on the physical fields is observed. Originality/value To the best of the author’s knowledge, this model is a novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium, and gravity plays an important role in the wave propagation of the field quantities. It explains that there are significant differences in the field quantities under the G-N II theory, the G-N III theory and the 3PHL model because of the phase-lag of temperature gradient and the phase-lag of heat flux.


Author(s):  
S.M. Abo-Dahab ◽  
A. Abd-Alla ◽  
araby kilany

A unified mathematical model of three-phase-lag in a compressed rotating isotropic homogeneous micropolar thermo-viscoelastic medium based on a ramp type thermal shock is developed. An application of this model is carried out to resolve the problem of a perfectly conducting half-space subjected to certain boundary conditions in the presence of an electromagnetic field. Lame’s potentials and normal mode analysis techniques are employed to get the general analytical solutions. Specific attention is paid to explore the impact of the rotation, magnetic field, ramp time, as well as initial stress on the distributions of temperature, displacement, stress, and induced electric and magnetic distribution. The findings show that the impact of the rotation, magnetic field, viscous, ramp parameter, initial stress, and phase-lag on the micropolar thermo-viscoelastic medium is noticeable.


2017 ◽  
Vol 14 (03) ◽  
pp. 1750030 ◽  
Author(s):  
Abhik Sur ◽  
M. Kanoria

The present paper deals with the problem of thermoelastic interactions in a homogeneous, isotropic three-dimensional medium whose surface suffers a time dependent thermal loading. The problem is treated on the basis of three-phase-lag model and dual-phase-lag model with two temperatures. The medium is assumed to be unstressed initially and has uniform temperature. Normal mode analysis technique is employed onto the non-dimensional field equations to derive the exact expressions for displacement component, conductive temperature, thermodynamic temperature, stress and strain. The problem is illustrated by computing the numerical values of the field variables for a copper material. Finally, all the physical fields are represented graphically to analyze the difference between the two models. The effect of the two temperature parameter is also discussed.


2017 ◽  
Vol 13 (1) ◽  
pp. 122-134 ◽  
Author(s):  
Mohamed I.A. Othman ◽  
Yassmin D. Elmaklizi ◽  
Nehal T. Mansoure

Purpose The purpose of this paper is to investigate the propagation of plane waves in an isotropic elastic medium under the effect of rotation, magnetic field and temperature-dependent properties with two‐temperatures. Design/methodology/approach The problem has been solved analytically by using the normal mode analysis. Findings The numerical results are given and presented graphically when mechanical and thermal force are applied. Comparisons are made with the results predicted by the three-phase-lag (3PHL) model and dual-phase-lag model in the presence and absence of cases where the modulus of elasticity is independent of temperature. Originality/value In this work, the authors study the influence of rotation and magnetic field with two‐temperature on thermoelastic isotropic medium when the modulus of elasticity is taken as a linear function of reference temperature in the context of the 3PHL model. The numerical results for the field quantities are obtained and represented graphically.


2016 ◽  
Vol 12 (2) ◽  
pp. 362-383 ◽  
Author(s):  
Samia M Said

Purpose – The dual-phase-lag (DPL) model and Lord-Shulman theory with one relaxation time are applied to study the effect of the gravity field, the magnetic field, and the hydrostatic initial stress on the wave propagation in a two-temperature generalized thermoelastic problem for a medium with an internal heat source that is moving with a constant speed. The paper aims to discuss this issue. Design/methodology/approach – The exact expressions of the considered variables are obtained by using normal mode analysis. Findings – Numerical results for the field quantities are given in the physical domain and illustrated graphically in the absence and presence of the gravity field as well as the magnetic field. Comparisons are made between the results of the two different models with and without temperature dependent properties and for two different values of the hydrostatic initial stress. A comparison is also made between the results of the two different models for two different values of the time. Originality/value – In the present work, the author shall formulate a two-temperature generalized magneto-thermoelastic problem for a medium with temperature dependent properties and with an internal heat source that is moving with a constant speed under the influence of a gravity field and a hydrostatic initial stress. Normal mode analysis is used to obtain the exact expressions for the displacement components, thermodynamic temperature, conductive temperature, and stress components. A comparison is carried out between the considered variables as calculated from the generalized thermoelasticity based on the DPL model and the L-S theory in the absence and presence of a magnetic field as well as a gravity field. Comparisons are also made between the results of the two theories with and without temperature dependent properties and for two different values of hydrostatic initial stress. A comparison is also made between the results of the two different models for two different values of the time.


2015 ◽  
Vol 11 (2) ◽  
pp. 297-318 ◽  
Author(s):  
Samia M Said

Purpose – The purpose of this paper is to investigate the effect of rotation and a magnetic field on the wave propagation in a generalized thermoelastic problem for a medium with an internal heat source that is moving with a constant speed. Design/methodology/approach – The formulation is applied to a generalized thermoelastic problem based on the three-phase-lag model and Green-Naghdi theory without energy dissipation. The medium is a homogeneous isotropic thermoelastic in the half-space. Findings – The exact expressions of the displacement components, temperature, and stress components are obtained by using normal mode analysis. Originality/value – Comparisons are made with the results predicted by the two models in the absence and presence of a magnetic field as well as a rotation. A comparison also is made with the results predicted by the two models for two different values of an internal heat source.


2018 ◽  
Vol 14 (1) ◽  
pp. 102-124 ◽  
Author(s):  
Sunita Deswal ◽  
Baljit Singh Punia ◽  
Kapil Kumar Kalkal

Purpose The dual-phase-lag (DPL) model is applied to study the effect of the gravity field and micropolarity on the wave propagation in a two-temperature generalized thermoelastic problem for a medium. The paper aims to discuss this issue. Design/methodology/approach The exact expressions of the considered variables are obtained by using normal mode analysis. Findings Numerical results for the field quantities are given in the physical domain and illustrated graphically to show the effect of angle of inclination. Comparisons of the physical quantities are also shown in figure to study the effect of gravity and two-temperature parameter. Originality/value This paper is concerned with the analysis of transient wave phenomena in a micropolar thermoelastic half-space subjected to inclined load. The governing equations are formulated in the context of two-temperature generalized thermoelasticity theory with DPLs. A medium is assumed to be initially quiescent and under the effect of gravity. An analytical solution of the problem is obtained by employing normal mode analysis. Numerical estimates of displacement, stresses and temperatures are computed for magnesium crystal-like material and are illustrated graphically. Comparisons of the physical quantities are shown in figures to study the effects of gravity, two-temperature parameter and angle of inclination. Some particular cases of interest have also been inferred from the present problem.


2018 ◽  
Vol 14 (2) ◽  
pp. 306-321 ◽  
Author(s):  
Mohamed I.A. Othman ◽  
S.M. Abo-Dahab ◽  
Haneen A. Alosaimi

Purpose The purpose of this paper is to study a model of the equations of a two-dimensional problem in a half space, whose surface in a free micropolar thermoelastic medium possesses cubic symmetry as a result of inclined load. The problem is formulated in the context of Green-Naghdi theory of type II (G-N II) (without energy dissipation) and of type III (G-N III) (with energy dissipation) under the effect of magnetic field. Design/methodology/approach The normal mode analysis is used to obtain the exact expressions of the physical quantities. Findings The numerical results are given and presented graphically when the inclined load and magnetic field are applied. Comparisons are made with the results predicted by G-N theory of both types II and III in the presence and absence of the magnetic field and for different values of the angle of inclination. Originality/value In the present work, the authors study the influence of inclined load and magnetic field in a micropolar thermoelastic medium in the context of the G-N theory of both types II and III. Numerical results for the field quantities are obtained and represented graphically.


2018 ◽  
Vol 23 (1) ◽  
pp. 5-21 ◽  
Author(s):  
P. Ailawalia ◽  
S. Budhiraja ◽  
J. Singh

AbstractThe purpose of this paper is to study the two dimensional deformation in a generalized thermoelastic medium with microtemperatures having an internal heat source subjected to a mechanical force. The force is acting along the interface of generalized thermoelastic half space and generalized thermoelastic half space with microtemperatures having an internal heat source. The normal mode analysis has been applied to obtain the exact expressions for the considered variables. The effect of internal heat source and microtemperatures on the above components has been depicted graphically.


Sign in / Sign up

Export Citation Format

Share Document