Study on casting design and analysis of magnesium alloy wheel

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xin Jiang ◽  
Xiaodong Hu ◽  
Hai Liu ◽  
Dongying Ju ◽  
Yoshio Fukushima ◽  
...  

PurposeThis research establishes a suitable casting model for magnesium alloy wheel. The casting of the wheel is an element that must be considered in the design of the wheel. Casting is an important basic process and technology in the field of machinery which is widely used in production, transportation, national defense, social life and other aspects. Computer numerical simulation of the casting process can shorten the product manufacturing cycle, reduce product costs, reduce casting defects and ensure product quality. The casting material in this study is AZ91 magnesium alloy used for wheel lightweight.Design/methodology/approachLightweight research of automobile is a significant trend, and people are paying attention to the lightweight design of automobiles. Higher requirement was proposed on design and casting performance of the wheel which is an important part of lightweighting vehicle. In order to achieve better quality, the parametric studies of alloy wheel and casting are necessary. This research designs a new model of automobile wheel, to ensure energy efficiency, the wheels must be as lightweight as possible, using magnesium alloy material for lightweight.FindingsAnalysis of casting process is a very complex issue. This research based on finite element theory and actual production, designed reasonable casting model, instant filling and solidification data were obtained. Aiming at reducing casting defects, process improvement of casting riser structure was designed. On the basis of the foundation, it has important guiding significance for actual foundry production.Originality/valueThis research establish a suitable casting model for magnesium alloy wheel. Aiming at reducing casting defects, process improvement of casting riser structure were designed.

2005 ◽  
Vol 475-479 ◽  
pp. 541-544 ◽  
Author(s):  
Hwa Chul Jung ◽  
Young Cheol Lee ◽  
Kwang Seon Shin

Magnesium die-casting has experienced dramatic growth over the past decade and the recycling of magnesium scrap has become increasingly important due to the generation of substantial quantities of scrap in the die-casting process. Magnesium is a readily recyclable material and the recycling of magnesium scrap is crucial in making magnesium more competitive. The main concern associated with using the secondary magnesium is the high level of Fe content and oxide inclusions that are detrimental to the corrosion and mechanical properties of the secondary alloy. In this study, the die-cast specimens were produced using the recycled class 1 scrap which is refined by means of Ar bubbling and Mn addition without using refining fluxes, and their mechanical properties and corrosion characteristics were investigated. The results showed that the tensile properties of the secondary AZ91 alloy were equivalent to those of the primary magnesium alloy after appropriate treatments. The corrosion resistance of the recycled magnesium was also found to increase by Ar bubbling and Mn addition.


2015 ◽  
Vol 46 (4) ◽  
pp. 1586-1595 ◽  
Author(s):  
Jianglan Duan ◽  
Carl Reilly ◽  
Daan M. Maijer ◽  
Steve L. Cockcroft ◽  
Andre B. Phillion

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Xin Jiang ◽  
Hai Liu ◽  
Rui Lyu ◽  
Yoshio Fukushima ◽  
Naoki Kawada ◽  
...  

Designing lightweight and comfortable automotive vehicles is a primary aim of the industry. Lightweight wheel designs can have a negative effect on the dynamic impact performance of the wheel; therefore, striking a balance between these two factors is a key objective in the design of automotive vehicles. Magnesium alloy wheels were investigated as magnesium alloy has damping performance advantages over some metal materials. Damping test methods were designed to establish the damping performance parameters of the magnesium alloy material. A finite element analysis model of magnesium alloy wheels was established with certain boundary conditions and constraints. The applicability of the model was verified by free modal evaluation of the wheel. Dynamic impact simulation analysis of the designed wheels was carried out, and the dynamic speed responses of magnesium alloy wheels under the impact of a dynamic load on the road surface were obtained. Comparison of the dynamic impact performance of magnesium and aluminum alloy wheels with the same structure showed that the magnesium alloy wheel achieved the target weight reduction of 32.3%; however, the dynamic impact performance was reduced. In order to realize the lightweight design, the dynamic impact performance of the magnesium alloy wheel should not be inferior to that of the aluminum alloy wheel; therefore, the design of the magnesium alloy wheel structure was optimized. The structural design optimization of the magnesium alloy wheel was carried out by defining the structural parameters of the wheel and using the acceleration and shock response of the wheel as the outputs. The optimization of weight reduction and dynamic impact performance of magnesium alloy wheels was achieved. Consequently, the designed magnesium alloy wheel was shown to have improved ride comfort while satisfying wheel structural performance standards and providing lightweight design.


2011 ◽  
pp. 765-770
Author(s):  
Liang Huo ◽  
Zhiqiang Han ◽  
Baicheng Liu ◽  
Xunming Zhu ◽  
Junpeng Duan ◽  
...  

2007 ◽  
Vol 26-28 ◽  
pp. 145-148 ◽  
Author(s):  
Shu Hei Uchida ◽  
Ippei Takeuchi ◽  
Gentaro Gonda ◽  
Kinji Hirai ◽  
Tokuteru Uesugi ◽  
...  

Twin roll casting process combines casting and hot rolling into a single process. In this study, mechanical properties at room temperature and microstructure of the twin roll cast AZ91 magnesium alloy are investigated. The alloy exhibited a good combination of high ultimate strength of 343MPa, yield stress of 224MPa and elongation to failure of 13%. The mechanical property was very excellent compared with AZ91 die-cast alloy. EPMA analysis reveals that the Al concentration in Mg matrix is higher in twin roll cast alloy than that in die-cast alloy. This high Al concentration must be the origin of the good mechanical properties of twin roll cast alloy at room temperature.


2011 ◽  
Vol 690 ◽  
pp. 129-132 ◽  
Author(s):  
Iman Bayandorian ◽  
Yan Huang ◽  
Geoff M. Scamans ◽  
Zhong Yun Fan

Melt conditioning by intensive shear was used prior to twin roll casting of an AZ91 magnesium alloy strip to promote heterogeneous nucleation and produce a refined and uniform microstructure without severe macro-segregation. The as-cast strip was then processed by homogenization, hot rolling and annealing and the microstructural behaviour during the downstream processing was examined and compared with the strip of the same alloy produced without melt conditioning. The melt conditioned strip after downstream processing displayed significantly improved mechanical properties with an average tensile elongation of ~16%, compared with ~10% for the strip produced without melt conditioning and the reported values of ~1.5-6.2% in the literature.


2019 ◽  
Vol 61 (3) ◽  
pp. 260-266 ◽  
Author(s):  
Ugur Koklu ◽  
Sezer Morkavuk ◽  
Levent Urtekin

2020 ◽  
Vol 72 (10) ◽  
pp. 1153-1158 ◽  
Author(s):  
Yafei Deng ◽  
Xiaotao Pan ◽  
Guoxun Zeng ◽  
Jie Liu ◽  
Sinong Xiao ◽  
...  

Purpose This paper aims to improve the tribological properties of aluminum alloys and reduce their wear rate. Design/methodology/approach Carbon is placed in the model at room temperature, pour 680°C of molten aluminum into the pressure chamber, and then pressed it into the mold containing carbon felt through a die casting machine, and waited for it to cool, which used an injection pressure of 52.8 MPa and held the same pressure for 15 s. Findings The result indicated that the mechanical properties of matrix and composite are similar, and the compressive strength of the composite is only 95% of the matrix alloy. However, the composite showed a low friction coefficient, the friction coefficient of Gr/Al composite is only 0.15, which just is two-third than that of the matrix alloy. Similarly, the wear rate of the composite is less than 4% of the matrix. In addition, the composite can avoid severe wear before 200°C, but the matrix alloy only 100°C. Originality/value This material has excellent friction properties and is able to maintain this excellent performance at high temperatures. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0454/


Sign in / Sign up

Export Citation Format

Share Document