Saudi nuclear plans will generate controversy

Subject The Saudi nuclear energy programme. Significance Riyadh plans to begin the lengthy process of integrating commercial nuclear power into its energy mix in 2018, selecting an international partner to begin construction of the first of what could be as many as 16 nuclear plants. However, the timing -- coinciding with a sharp rise in tensions with Tehran and the potential breakdown of the 2015 multilateral Iran nuclear deal -- makes this a sensitive issue. Impacts Riyadh will need to develop sophisticated safety and security infrastructure to protect its nuclear power plants. Salafi-jihadist groups in the region could target the plants in terrorist attacks or seek to steal nuclear material. Iran and to a lesser extent Syria could have the capability to launch cyberattacks against the operating systems. International partners will provide technical assistance but may be concerned about longer-term political risks.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Akponanabofa Henry Oti ◽  
Peter Farrell ◽  
Fonbeyin Henry Abanda ◽  
Paul McMahon ◽  
Abdul-Majeed Mahamadu ◽  
...  

Purpose The relatively low capital cost and contributions to mitigating global warming have favoured the continuous construction and operation of nuclear power plants (NPPs) across the world. One critical phase in the operation of nuclear plants for ensuring the safety and security of radioactive products and by-products is decommissioning. With the advent of digital twinning in the building information modelling (BIM) methodology, efficiency and safety can be improved from context-focus access to regulations pertaining to demolition of structures and the cleaning-up of radioactivity inherent in nuclear stations. The purpose of this study, therefore, is to propose a BIM-driven framework to achieve a more regulation-aware and safer decommissioning of nuclear power plants. Design/methodology/approach The framework considers task requirements, and landscape and environmental factors in modelling demolition scenarios that characterise decommissioning processes. The framework integrates decommissioning rules/regulations in a BIM linked non-structured query system to model items and decommissioning tasks, which are implemented based on context-focussed retrieval of decommissioning rules and regulations. The concept’s efficacy is demonstrated using example cases of digitalised NPPs. Findings This approach contributes to enhancing improvements in nuclear plant decommissioning with potential for appropriate activity sequencing, risk reduction and ensuring safety. Originality/value A BIM-driven framework hinged on querying non-structured databases to provide context-focussed access to nuclear rules and regulations and to aiding decommissioning is new.


2020 ◽  
Vol 20 (2) ◽  
pp. 127-132
Author(s):  
Namjin Cho ◽  
Dongsu Im ◽  
Jungdon Kwon ◽  
Teayeon Cho ◽  
Junglim Lee

Nuclear power plants store and use flammable gases and liquids and consequently risk explosions. Therefore, nuclear plants employ explosion-proof equipment; however, this equipment is not always sufficiently maintained. This lack of maintenance can affect the safety-related equipment intended to shut down the reactor, because the explosion-proof equipment itself can act as an ignition source. Radio-frequency identification (RFID) technology should be explored as a tool to improve both the convenience and efficiency of maintenance. We analyzed and compared explosion-proof RFID technology that can be used in nuclear power plants.


Author(s):  
J. Douglas Hill ◽  
Paul Moore

Nuclear power plants rely on Instrumentation and Control (I&C) systems for control, monitoring and protection of the plant. The original, analog designs used in most nuclear plants have become or soon will be obsolete, forcing plants to turn to digital technology. Many factors affect the design of replacement equipment, including long-term and short-term economics, regulatory issues, and the way the plant operates on a day-to-day basis. The first step to all modernization projects should involve strategic planning, to ensure that the overall long and short-term goals of the plant are met. Strategic planning starts with a thorough evaluation of the existing plant control systems, the available options, and the benefits and consequences of these options.


Author(s):  
Alberto Del Rosso ◽  
Jean-François Roy ◽  
Frank Rahn ◽  
Alejandro Capara

This paper presents a general approach to evaluate the risk of trip or Loss of Off-site Power (LOOP) events in nuclear power plants due to contingencies in the power grid. The proposed methodology is based on the Zone of Vulnerability concept for nuclear plants introduced by EPRI in previous work. The proposed methodology is intended to be part of an integrated probabilistic risk assessment tool that is being developed under ongoing EPRI R&D programs. A detailed analysis of many events occurred in actual nuclear plants has been performed in order to identify, classify and characterize the various vulnerability and type of failures that may affect a nuclear plant. Based the outcome of that analysis, a methodology for evaluating the impact of off-site transmission system events on nuclear plants has been outlined. It includes description of the type of contingencies and conditions that need to be included in the analysis, as well as provisions regarding the simulation tools and models that should be used in each case. The methodology is illustrated in a simplified representation of the Western Electricity Coordinating Council (WECC) system in the U.S.


Author(s):  
Robert K. Perdue ◽  
G. Gary Elder ◽  
Gregory Gerzen

Certain nuclear power plants have “Rev B” reactor vessel upper internals guide tube support pins, commonly referred to as split pins, made from material with properties similar to Alloy 600 and known to be susceptible to primary water stress corrosion cracking (PWSCC). This paper describes a rigorous probabilistic methodology for evaluating the economics of a preemptive replacement of these split pins, and describes an application at four of Exelon Generation’s nuclear plants. The method uses Bayesian statistical reliability modeling to estimate a Weibull time-to-failure prediction model using limited historical failures, and a Westinghouse proactive aging management simulation tool called PAM to select a split pin replacement date that would maximize the net present value of cash flow to a plant. Also in this study is a sensitivity evaluation of the impact of zinc addition on split pin replacement timing. Plant decisions made based in part on results derived from applying this approach are noted.


Author(s):  
Asko Vuorinen

The Finnish companies have built four medium size nuclear power plants. In addition they have constructed two nuclear icebreakers and several floating power plants. The latest 1650 MWe nuclear power plant under construction Olkiluoto-3 has had many problems, which have raised the costs of the plant to €3500/kWe from its original estimate of €2000/kWe and constriction schedule from four to eight years. It is possible to keep the costs down and schedule short by making the plant in shipyard and transport it to site by sea. The plant could be then lifted to its place by pumping seawater into the channel. This kind of concept was developed by the author in 1991, when he was making his thesis of modular gas fired power plants in Helsinki University of Technology. The modular construction of nuclear plants has made in a form of two nuclear icebreakers, which Wa¨rtsila¨ Marine has built in Helsinki Shipyard. The latest modular nuclear plant was launched in 2010 in St Petersburg shipyard. One of the benefits of modular construction is a possibility to locate the plant under rock by making the transportation channels in tunnels. This will give the plant external protection for aircraft crash and make the outer containment unnecessary. The water channels could also be used as pressure suppression pools in case of venting steam from the containment. This could reduce the radioactive releases in case of possible reactor accidents. The two 440 MW VVER plants build in Finland had construction costs of €1600 /kWe at 2011 money. The author believes that a 1200 MW nuclear plant with four 300 MW units can be constructed in five years and with €3300/kW costs, where the first plant could be generating power within 40 months and next units with 6 month intervals.


2002 ◽  
Vol 13 (2) ◽  
pp. 239-261
Author(s):  
Steve Thomas

In 1990, the privatisation of the British electricity supply industry revealed how uneconomic Britain's nuclear power plants were. The nuclear sector was withdrawn from privatisation and it seemed likely that by 2000, most of Britain's nuclear power plants would be closed. However, operating costs were dramatically reduced and in 1996, most of the nuclear plants were privatised in British Energy. Nuclear output made an important contribution to the reduction of greenhouse gas emissions and the future looked secure for the existing plants. However, the early success of British Energy was based on an inflated wholesale electricity price and by 2000, British Energy was struggling to cover its costs. The British government is now conducting a review of energy policy. The economic case for new nuclear power plants is poor but the need to meet greenhouse gas emission targets and the influence British Energy and BNFL may ensure the long-term future of the existing plants.


Author(s):  
Vitaly V. Petrunin ◽  
Nikolay G. Kodochigov ◽  
Yury P. Sukharev ◽  
Sergey L. Osipov ◽  
Elena V. Marova

Increased interest in development of nuclear power engineering, first of all in non-nuclear countries, puts an emphasis on the designing of small and medium nuclear power plants and determines the growth in nuclear technology export from countries with advanced nuclear industries. It accentuates the issue of reduction of the nuclear material proliferation risk, which was repeatedly raised on the national an international levels (materials of INPRO, GNEP, IAEA).


Author(s):  
Kuniyoshi Komatsu ◽  
Katsunori Myojin ◽  
Hiroyuki Fuyama ◽  
Eiji Kokubo ◽  
Kazuo Imai

Ultimate behaviors of cable trays, used in nuclear plants, have not been well studied since cable trays are designed based on conservative design criteria. In this study, by employing a large shaker table, an ultimate strength test was conducted for cable trays used in nuclear power plants. This report describes the results of shaker table test. The following results were obtained: 1) In an S2* earthquake, the damping ratio was so large — more than 30% due to the rubbing of cables — that a large response was not present and the strains in the support were within the elastic limits. 2) The support was strong enough to sustain the cable trays even when the strain in the support was 20 times larger than elastic strain.


Author(s):  
Hiroshi Matsuzawa

There are 53 (fifty-three) nuclear power plants (both PWR and BWR type) are now under operating in Japan, and the oldest plant has been operating more than thirty years. These plants will be operated until sixty years for operation periods, and will be verified the integrity for assessment of nuclear plants for every ten years in Japan. Reactor Pressure Vessels (RPVs) are required to evaluate the reduction of fracture toughness and the increase of the reference temperature in the transition region. As the operating period will be longer, the prediction for these material properties will be more important. Recently the domestic prediction formula of embrittlement was revised based on the database of domestic plant surveillance test results for thirty years olds as the JEAC4201-2007 [7]. The adequacy for this prediction formula using for sixty year periods is verified by use of the results of the material test reactors (MTRs), but the effects of the accelerated irradiation on embrittlement has not been clear now. So, JNES started the national project, called as “PRE” project on 2005 in order to investigate how flux influences on the ΔRTNDT. In this project the RPV materials irradiated in the actual PWR plant have been re-irradiated in the OECD/Halden test reactor by several different fluxes up to the high fluence region, and the microstructual change for these materials will be investigated in order to make clear the cause of the irradiation embrittlement. In this paper the overall scheme of this project and the summary of the updated results will be presented.


Sign in / Sign up

Export Citation Format

Share Document