scholarly journals A BIM-driven framework for integrating rules and regulations in the decommissioning of nuclear power plants

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Akponanabofa Henry Oti ◽  
Peter Farrell ◽  
Fonbeyin Henry Abanda ◽  
Paul McMahon ◽  
Abdul-Majeed Mahamadu ◽  
...  

Purpose The relatively low capital cost and contributions to mitigating global warming have favoured the continuous construction and operation of nuclear power plants (NPPs) across the world. One critical phase in the operation of nuclear plants for ensuring the safety and security of radioactive products and by-products is decommissioning. With the advent of digital twinning in the building information modelling (BIM) methodology, efficiency and safety can be improved from context-focus access to regulations pertaining to demolition of structures and the cleaning-up of radioactivity inherent in nuclear stations. The purpose of this study, therefore, is to propose a BIM-driven framework to achieve a more regulation-aware and safer decommissioning of nuclear power plants. Design/methodology/approach The framework considers task requirements, and landscape and environmental factors in modelling demolition scenarios that characterise decommissioning processes. The framework integrates decommissioning rules/regulations in a BIM linked non-structured query system to model items and decommissioning tasks, which are implemented based on context-focussed retrieval of decommissioning rules and regulations. The concept’s efficacy is demonstrated using example cases of digitalised NPPs. Findings This approach contributes to enhancing improvements in nuclear plant decommissioning with potential for appropriate activity sequencing, risk reduction and ensuring safety. Originality/value A BIM-driven framework hinged on querying non-structured databases to provide context-focussed access to nuclear rules and regulations and to aiding decommissioning is new.

2020 ◽  
Vol 20 (2) ◽  
pp. 127-132
Author(s):  
Namjin Cho ◽  
Dongsu Im ◽  
Jungdon Kwon ◽  
Teayeon Cho ◽  
Junglim Lee

Nuclear power plants store and use flammable gases and liquids and consequently risk explosions. Therefore, nuclear plants employ explosion-proof equipment; however, this equipment is not always sufficiently maintained. This lack of maintenance can affect the safety-related equipment intended to shut down the reactor, because the explosion-proof equipment itself can act as an ignition source. Radio-frequency identification (RFID) technology should be explored as a tool to improve both the convenience and efficiency of maintenance. We analyzed and compared explosion-proof RFID technology that can be used in nuclear power plants.


2002 ◽  
Vol 13 (2) ◽  
pp. 239-261
Author(s):  
Steve Thomas

In 1990, the privatisation of the British electricity supply industry revealed how uneconomic Britain's nuclear power plants were. The nuclear sector was withdrawn from privatisation and it seemed likely that by 2000, most of Britain's nuclear power plants would be closed. However, operating costs were dramatically reduced and in 1996, most of the nuclear plants were privatised in British Energy. Nuclear output made an important contribution to the reduction of greenhouse gas emissions and the future looked secure for the existing plants. However, the early success of British Energy was based on an inflated wholesale electricity price and by 2000, British Energy was struggling to cover its costs. The British government is now conducting a review of energy policy. The economic case for new nuclear power plants is poor but the need to meet greenhouse gas emission targets and the influence British Energy and BNFL may ensure the long-term future of the existing plants.


Author(s):  
Kuniyoshi Komatsu ◽  
Katsunori Myojin ◽  
Hiroyuki Fuyama ◽  
Eiji Kokubo ◽  
Kazuo Imai

Ultimate behaviors of cable trays, used in nuclear plants, have not been well studied since cable trays are designed based on conservative design criteria. In this study, by employing a large shaker table, an ultimate strength test was conducted for cable trays used in nuclear power plants. This report describes the results of shaker table test. The following results were obtained: 1) In an S2* earthquake, the damping ratio was so large — more than 30% due to the rubbing of cables — that a large response was not present and the strains in the support were within the elastic limits. 2) The support was strong enough to sustain the cable trays even when the strain in the support was 20 times larger than elastic strain.


Subject The Saudi nuclear energy programme. Significance Riyadh plans to begin the lengthy process of integrating commercial nuclear power into its energy mix in 2018, selecting an international partner to begin construction of the first of what could be as many as 16 nuclear plants. However, the timing -- coinciding with a sharp rise in tensions with Tehran and the potential breakdown of the 2015 multilateral Iran nuclear deal -- makes this a sensitive issue. Impacts Riyadh will need to develop sophisticated safety and security infrastructure to protect its nuclear power plants. Salafi-jihadist groups in the region could target the plants in terrorist attacks or seek to steal nuclear material. Iran and to a lesser extent Syria could have the capability to launch cyberattacks against the operating systems. International partners will provide technical assistance but may be concerned about longer-term political risks.


Author(s):  
Anne-Sophie Bogaert ◽  
Michel Desmet ◽  
Arnaud Gendebien

Since the Surry-accident of 1986, Electrabel and Tractebel Engineering have performed extensive ultrasonic inspection campaigns to detect pipe wall thinning due to Flow Accelerated Corrosion (FAC) in the Balance-of-Plant systems of the seven Belgian nuclear power plants. Since 2000 EPRI’s predictive software CHECWORKS is used as a means to focus future inspections on the most susceptible components. In 2005, Tractebel Engineering participated in a benchmark set-up by the Framatome Owners Group (FROG) that compared the different FAC predictive models used by the FROG members. In 2006, Electrabel and Tractebel Engineering decided to perform an assessment of the way in which the follow-up of Flow Accelerated Corrosion (FAC) is done in the Belgian nuclear plants. This paper summarizes the Flow Accelerated Corrosion program in the Belgian nuclear plants as well as some of the main aspects of the Flow Accelerated Corrosion management, including the use of a predictive software, the method of inspections and the actions taken to keep the FAC program up to date.


2019 ◽  
Vol 36 (4) ◽  
pp. 1238-1257 ◽  
Author(s):  
Gangling Hou ◽  
Meng Li ◽  
Sun Hai ◽  
Tianshu Song ◽  
Lingshu Wu ◽  
...  

Purpose Seismic isolation, as an effective risk mitigation strategy of building/bridge structures, is incorporated into AP1000 nuclear power plants (NPPs) to alleviate the seismic damage that may occur to traditional structures of NPPs during their service. This is to promote the passive safety concept in the structural design of AP1000 NPPs against earthquakes. Design/methodology/approach In conjunction with seismic isolation, tuned-mass-damping (TMD) is integrated into the seismic resistance system of AP1000 NPPs to satisfy the multi-functional purposes. The proposed base-isolation-tuned-mass-damper (BIS-TMD) is studied by comparing the seismic performance of NPPs with four different design configurations (i.e. without BIS, BIS, BIS-TMD and TMD) with the design parameters of the TMD subsystem optimized. Findings Such a new seismic protection system (BIS-TMD) is proved to be promising because the advantages of BIS and TMD can be fully used. The benefits of the new structure include effective energy dissipation (i.e. wide vibration absorption band and a stable damping effect), which results in the high performance of NPPs subject to earthquakes with various intensity levels and spectra features. Originality/value Parametric studies are performed to demonstrate the seismic robustness (e.g. consistent performance against the changing mass of the water in the gravity liquid tank and mechanical properties) which further ensures that seismic safety requirements of NPPs can be satisfied through the use of BIS-TMD.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gangling Hou ◽  
Yu Liu ◽  
Tao Wang ◽  
Binsheng Wang ◽  
Tianshu Song ◽  
...  

PurposeAn inter-story isolation structure (IIS) for AP1000 nuclear power plants (NPPs) is provided to resolve the conflict of seismic safety and the optimal location of air intakes.Design/methodology/approachThe effect of passive cooling system (PCS) is better with lower altitude of air intakes than that in the original design of AP1000 NPPs. Seismic performances of IIS NPPs, including the seismic responses, damping frequency bandwidth and seismic reduction robustness, are improved by combining the position of air intakes lower and the optimal design method.FindingsTheoretical analysis and numerical simulation are illustrated that the seismic reduction failure of IIS NPPs is the lowest probability of occurrence when PCS has highest working efficiency.Originality/valueThe IIS NPPs can transfer the contradiction between PCS work efficiency and seismic safety of NPPs to the mutual promotion of them.


2016 ◽  
Vol 14 (3) ◽  
pp. 526-542 ◽  
Author(s):  
Ashok Kumar Upadhyay ◽  
Karuna Jain

Purpose Modularity in design and construction of nuclear power plants (NPPs) is widely used for reduction in project construction time and cost. This paper aims to improve understanding of existence, rationale, relevance, types and definitions of modularity in NPPs. Design/methodology/approach The paper approaches study of modularity in NPPs through review of existing literature. The objective of this paper is to answer the questions such as “what is the meaning of module in the context of NPPs?”, “what is the meaning of modularity in the context of NPPs?”, “why modularity is considered in the design and construction of NPPs?”, “what are the types of modules and modularity?” and “what are the emerging trends?” Findings Findings of the paper indicate towards widespread use of modularity to reduce construction time and cost, improve safety performance and enable smarter applications of NPPs. Large NPPs tend to use modularity to shorten the project gestation period, and thereby reduce capital cost. Small and medium size NPPs plan to use modularity for simpler and safer reactors that can be factory manufactured, transported, installed and scaled up as permitted by the economic environment. Research limitations/implications This being a review, it has the usual limitations associated with the literature review papers. Practical implications Findings of the paper may influence policy regarding option, type, size, design, engineering, procurement and construction of NPPs. Social implications Findings of the paper may influence the safety, cost, time and quality performance of future NPPs and facilitate cheaper and more reliable supply of electricity to consumers. Originality/value The systematic literature review presents issues and emerging trends in modularity of NPPs, enabling the future work to progress as modularity continues to develop and evolve. The paper also proposes a comprehensive classification and definitions of modules and modularity in NPPs that may facilitate understanding of these terms precisely and uniformly by researchers and practitioners alike.


Author(s):  
Myung-Hwan Boo ◽  
Kyoung Soo Lee ◽  
Hyun-Su Kim ◽  
Chang-Kyun Oh

In accordance with the recommendation of USNRC and the U.S. license renewal experiences, the effect of reactor coolant environment on the fatigue life has to be considered for the continued operation of operating nuclear power plants as well as for the design of new plants in Korea. The reason is that it is very important to maintain the structural integrity and reliability of the nuclear power plants against the fatigue failure during operation. Fatigue monitoring system has been considered as a practical way to ensure safe operation of the nuclear power plants in terms of the fatigue. The fatigue monitoring system evaluates various plant conditions and their effects on the monitored location to give quantified value that indicates accumulated fatigue damage up to date. From this, the authors have developed a fatigue monitoring system, named NuFMS (Nuclear Fatigue Monitoring System) in web environment and has been being applied widely to Korean nuclear plants. In this paper, overall configuration and characteristics of the NuFMS are described in detail.


2020 ◽  
Vol 24 (3) ◽  
pp. 44-50
Author(s):  
V.A. Grachev

This article provides an analysis of issues in relation to the environmental safety of nuclear power plants, based on the international and Russian experience. The author demonstrates that Russian nuclear plants have a high level of environmental safety. Brief characteristics of all safety barriers have been given. And attention has been paid to the stress tests of the operating nuclear powers plants. Statistic data over recent decades confirm the high level of safety. Special attention is given to nuclear power plants having new-generation 3+ VVER reactors with the capacity of 1,200 MW.


Sign in / Sign up

Export Citation Format

Share Document