Efficient volumetric error compensation technique for additive manufacturing machines

2016 ◽  
Vol 22 (1) ◽  
pp. 2-19 ◽  
Author(s):  
Carlos Cajal ◽  
Jorge Santolaria ◽  
David Samper ◽  
Jesus Velazquez

Purpose – This paper aims to present a methodology for volumetric error compensation. This technique is applied to an Objet Eden350V 3D printer and involves a custom measurement strategy. Design/methodology/approach – The kinematic model of the printer is explained, and its error model is simplified to 18 independent error functions. Each error function is defined by a cubic Legendre polynomial. The coefficients of the polynomials are obtained through a Levenberg–Marquardt optimization process. This optimization process compares, in an iterative algorithm, nominal coordinates with actual values of the cloud of points. The points are built in the faces of a gauge artefact as conical sockets defining one unique point for each socket. These points are measured by a coordinate measuring machine self-centring measurement process. Findings – Most of the errors of the 3D printer are systematic. It is possible to obtain an improvement of 70 per cent in terms of global mean error reduction in single points within a volume of 120 × 120 × 40 mm. The forecast of the final error compensation fully matches the actual final error. Practical implications – This methodology can be used for accuracy improvement in additive manufacturing machines. Originality/value – Unlike the calculation of geometric errors, the proposed parametric determination through optimization of the error model allows global error reduction, which decreases all sort of systematic errors concurrently. The proposed measurement strategy allows high reliability, high speed and operator independence in the measurement process, which increases efficiency and reduces the cost. The proposed methodology is easily translated to other rapid prototyping machines and allows scalability when replicating artefacts covering any working volume.

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jose Manuel Sierra ◽  
Maria del Rocio Fernandez ◽  
Jose Ignacio Ignacio Rodriguez Garcia ◽  
Jose Luis Cortizo ◽  
Marta María Villazon

Purpose This paper describes the evolution of the design of a mechanical distractor fabricated using additive manufacturing (AM) technology for use in surgical procedures, such as transanal endoscopic microsurgery (TEM). The functionality of the final device was analysed and the suitability of different materials was determined. Design/methodology/approach Solid modelling and finite element modelling software were used in the design and validation process to allow the fabrication of the device by AM. Several prototypes were manufactured and tested in this study. Findings A new design was developed to greatly simplify the existing devices used in TEM surgery. The new design is easy to use, more economical and does not require pneumorectum. Different AM materials were investigated with regard to their mechanical properties, orientation of parts in the three-dimensional (3D) printer and cytotoxicity to select the optimal material for the design. Social implications The device designed by AM can be printed anywhere in the world, provided that a 3D printer is available; the 3D printer does not have to be a high-performance printer. This makes surgery more accessible, particularly in low-income regions. Moreover, patient recovery is improved and pneumorectum is not required. Originality/value A suitable mechanical distractor was designed for TEM, and different materials were validated for fabrication by AM.


2018 ◽  
Vol 24 (9) ◽  
pp. 1486-1499 ◽  
Author(s):  
Hyoung Seok Kang ◽  
Sang Do Noh ◽  
Ji Yeon Son ◽  
Hyun Kim ◽  
Jun Hee Park ◽  
...  

PurposeIn this paper, a three-dimensional (3D) printer-based manufacturing line and supporting system, which supports personalized/customized manufacturing for individual businesses or start-up companies, was studied to evaluate the practicality of using additive manufacturing for personalization/mass customization.Design/methodology/approachFirst, factory-as-a-service (FaaS) system, which provides factory as a service to customers, was proposed and designed to manufacture various products within a distributed manufacturing environment. This system includes 3D printer-based material extrusion processes, vapor machine/computer numerical control machines as post-processes and assembly and inspection processes with an automated material handling robot in the factory. Second, a virtualization module for the FaaS factory was developed using a simulation model interfaced with a cloud-based order and production-planning system and an internet-of-things-based control and monitoring system. This is part of the system for manufacturing operations, which is capable of dynamic scheduling in a distributed manufacturing environment. In addition, simulation-based virtual production was conducted to verify and evaluate the FaaS factory for the target production scenario. Main information of the simulation also has been identified and included in the virtualization module. Finally, the established system was applied in a sample production scenario to evaluate its practicality and efficiency.FindingsAdditive manufacturing is a reliable, feasible and applicable technology, and it can be a core element in smart manufacturing and the realization of personalization/mass customization.Originality/valueVarious studies on additive manufacturing have been conducted with regard to replacing the existing manufacturing methods or integrating with them, but these studies mostly focused on materials or types of additive manufacturing, with few advanced or applied studies on the establishment of a new manufacturing environment for personalization/mass customization.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xi Luo ◽  
Yingjie Zhang ◽  
Lin Zhang

Purpose The purpose of this paper is to improve the positioning accuracy of 6-Dof serial robot by the way of error compensation and sensitivity analysis. Design/methodology/approach In this paper, the Denavit–Hartenberg matrix is used to construct the kinematics models of the robot; the effects from individual joint and several joints on the end effector are estimated by simulation. Then, an error model based on joint clearance is proposed so that the positioning accuracy at any position of joints can be predicted for compensation. Through the simulation of the curve path, the validity of the error compensation model is verified. Finally, the experimental results show that the error compensation method can improve the positioning accuracy of a two joint exoskeleton robot by nearly 76.46%. Findings Through the analysis of joint error sensitivity, it is found that the first three joints, especially joint 2, contribute a lot to the positioning accuracy of the robot, which provides guidance for the accuracy allocation of the robot. In addition, this paper creatively puts forward the error model based on joint clearance, and the error compensation method which decouples the positioning accuracy into joint errors. Originality/value It provides a new idea for error modeling and error compensation of 6-Dof serial robot. Combining sensitivity analysis results with error compensation can effectively improve the positioning accuracy of the robot, and provide convenience for welding robot and other robots that need high positioning accuracy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhao ◽  
Ye Zhao ◽  
Ming-De Li ◽  
Zhong’an Li ◽  
Haiyan Peng ◽  
...  

AbstractPhotopolymerization-based three-dimensional (3D) printing can enable customized manufacturing that is difficult to achieve through other traditional means. Nevertheless, it remains challenging to achieve efficient 3D printing due to the compromise between print speed and resolution. Herein, we report an efficient 3D printing approach based on the photooxidation of ketocoumarin that functions as the photosensitizer during photopolymerization, which can simultaneously deliver high print speed (5.1 cm h−1) and high print resolution (23 μm) on a common 3D printer. Mechanistically, the initiating radical and deethylated ketocoumarin are both generated upon visible light exposure, with the former giving rise to rapid photopolymerization and high print speed while the latter ensuring high print resolution by confining the light penetration. By comparison, the printed feature is hard to identify when the ketocoumarin encounters photoreduction due to the increased lateral photopolymerization. The proposed approach here provides a viable solution towards efficient additive manufacturing by controlling the photoreaction of photosensitizers during photopolymerization.


2015 ◽  
Vol 21 (6) ◽  
pp. 705-715 ◽  
Author(s):  
M. Fantini ◽  
F. De Crescenzio ◽  
L. Ciocca ◽  
F. Persiani

Purpose – The purpose of this paper is to describe two different approaches for manufacturing pre-formed titanium meshes to assist prosthetically guided bone regeneration of atrophic maxillary arches. Both methods are based on the use of additive manufacturing (AM) technologies and aim to limit at the minimal intervention the bone reconstructive surgery by virtual planning the surgical intervention for dental implants placement. Design/methodology/approach – Two patients with atrophic maxillary arches were scheduled for bone augmentation using pre-formed titanium mesh with particulate autogenous bone graft and alloplastic material. The complete workflow consists of four steps: three-dimensional (3D) acquisition of medical images and virtual planning, 3D modelling and design of the bone augmentation volume, manufacturing of biomodels and pre-formed meshes, clinical procedure and follow up. For what concerns the AM, fused deposition modelling (FDM) and direct metal laser sintering (DMLS) were used. Findings – For both patients, a post-operative control CT examination was scheduled to evaluate the progression of the regenerative process and verify the availability of an adequate amount of bone before the surgical intervention for dental implants placement. In both cases, the regenerated bone was sufficient to fix the implants in the planned position, improving the intervention quality and reducing the intervention time during surgery. Originality/value – A comparison between two novel methods, involving AM technologies are presented as viable and reproducible methods to assist the correct bone augmentation of atrophic patients, prior to implant placement for the final implant supported prosthetic rehabilitation.


2016 ◽  
Vol 22 (4) ◽  
pp. 660-675 ◽  
Author(s):  
Sajan Kapil ◽  
Prathamesh Joshi ◽  
Hari Vithasth Yagani ◽  
Dhirendra Rana ◽  
Pravin Milind Kulkarni ◽  
...  

Purpose In additive manufacturing (AM) process, the physical properties of the products made by fractal toolpaths are better as compared to those made by conventional toolpaths. Also, it is desirable to minimize the number of tool retractions. The purpose of this study is to describe three different methods to generate fractal-based computer numerical control (CNC) toolpath for area filling of a closed curve with minimum or zero tool retractions. Design/methodology/approach This work describes three different methods to generate fractal-based CNC toolpath for area filling of a closed curve with minimum or zero tool retractions. In the first method, a large fractal square is placed over the outer boundary and then rest of the unwanted curve is trimmed out. To reduce the number of retractions, ends of the trimmed toolpath are connected in such a way that overlapping within the existing toolpath is avoided. In the second method, the trimming of the fractal is similar to the first method but the ends of trimmed toolpath are connected such that the overlapping is found at the boundaries only. The toolpath in the third method is a combination of fractal and zigzag curves. This toolpath is capable of filling a given connected area in a single pass without any tool retraction and toolpath overlap within a tolerance value equal to stepover of the toolpath. Findings The generated toolpath has several applications in AM and constant Z-height surface finishing. Experiments have been performed to verify the toolpath by depositing material by hybrid layered manufacturing process. Research limitations/implications Third toolpath method is suitable for the hybrid layered manufacturing process only because the toolpath overlapping tolerance may not be enough for other AM processes. Originality/value Development of a CNC toolpath for AM specifically hybrid layered manufacturing which can completely fill any arbitrary connected area in single pass while maintaining a constant stepover.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
J. Norberto Pires ◽  
Amin S. Azar ◽  
Filipe Nogueira ◽  
Carlos Ye Zhu ◽  
Ricardo Branco ◽  
...  

Purpose Additive manufacturing (AM) is a rapidly evolving manufacturing process, which refers to a set of technologies that add materials layer-by-layer to create functional components. AM technologies have received an enormous attention from both academia and industry, and they are being successfully used in various applications, such as rapid prototyping, tooling, direct manufacturing and repair, among others. AM does not necessarily imply building parts, as it also refers to innovation in materials, system and part designs, novel combination of properties and interplay between systems and materials. The most exciting features of AM are related to the development of radically new systems and materials that can be used in advanced products with the aim of reducing costs, manufacturing difficulties, weight, waste and energy consumption. It is essential to develop an advanced production system that assists the user through the process, from the computer-aided design model to functional components. The challenges faced in the research and development and operational phase of producing those parts include requiring the capacity to simulate and observe the building process and, more importantly, being able to introduce the production changes in a real-time fashion. This paper aims to review the role of robotics in various AM technologies to underline its importance, followed by an introduction of a novel and intelligent system for directed energy deposition (DED) technology. Design/methodology/approach AM presents intrinsic advantages when compared to the conventional processes. Nevertheless, its industrial integration remains as a challenge due to equipment and process complexities. DED technologies are among the most sophisticated concepts that have the potential of transforming the current material processing practices. Findings The objective of this paper is identifying the fundamental features of an intelligent DED platform, capable of handling the science and operational aspects of the advanced AM applications. Consequently, we introduce and discuss a novel robotic AM system, designed for processing metals and alloys such as aluminium alloys, high-strength steels, stainless steels, titanium alloys, magnesium alloys, nickel-based superalloys and other metallic alloys for various applications. A few demonstrators are presented and briefly discussed, to present the usefulness of the introduced system and underlying concept. The main design objective of the presented intelligent robotic AM system is to implement a design-and-produce strategy. This means that the system should allow the user to focus on the knowledge-based tasks, e.g. the tasks of designing the part, material selection, simulating the deposition process and anticipating the metallurgical properties of the final part, as the rest would be handled automatically. Research limitations/implications This paper reviews a few AM technologies, where robotics is a central part of the process, such as vat photopolymerization, material jetting, binder jetting, material extrusion, powder bed fusion, DED and sheet lamination. This paper aims to influence the development of robot-based AM systems for industrial applications such as part production, automotive, medical, aerospace and defence sectors. Originality/value The presented intelligent system is an original development that is designed and built by the co-authors J. Norberto Pires, Amin S. Azar and Trayana Tankova.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ilse Valenzuela Matus ◽  
Jorge Lino Alves ◽  
Joaquim Góis ◽  
Augusto Barata da Rocha ◽  
Rui Neto ◽  
...  

Purpose The purpose of this paper is to prove and qualify the influence of textured surface substrates morphology and chemical composition on the growth and propagation of transplanted corals. Use additive manufacturing and silicone moulds for converting three-dimensional samples into limestone mortar with white Portland cement substrates for coral growth. Design/methodology/approach Tiles samples were designed and printed with different geometries and textures inspired by nature marine environment. Commercial coral frag tiles were analysed through scanning electron microscopy (SEM) to identify the main chemical elements. Raw materials and coral species were selected. New base substrates were manufactured and deployed into a closed-circuit aquarium to monitor the coral weekly evolution process and analyse the results obtained. Findings Experimental results provided positive statistical parameters for future implementation tests, concluding that the intensity of textured surface, interfered favourably in the coralline algae biofilm growth. The chemical composition and design of the substrates were determinant factors for successful coral propagation. Recesses and cavities mimic the natural rocks aspect and promoted the presence and interaction of other species that favour the richness of the ecosystem. Originality/value Additive manufacturing provided an innovative method of production for ecology restoration areas, allowing rapid prototyping of substrates with high complexity morphologies, a critical and fundamental attribute to guarantee coral growth and Crustose Coralline Algae. The result of this study showed the feasibility of this approach using three-dimensional printing technologies.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yuezong Wang ◽  
Jinghui Liu ◽  
Mengfei Guo ◽  
LiuQIan Wang

Purpose A three-dimensional (3D) printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. The purpose of this study is to analyze the influence of such errors on printing accuracy and printing quality for delta-robot 3D printer. Design/methodology/approach First, the kinematic model of a delta-robot 3D printer with an ideal geometric structure is proposed by using vector analysis. Then, the normal kinematic model of a nonideal delta-robot 3D robot with tilted vertical beams is derived based on the above ideal kinematic model. Finally, a 3D printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. Findings The results show that tilted vertical beams can indeed cause 3D printing errors and further influence the 3D printing quality of the final products and that the 3D printing errors of tilted vertical beams are related to the rotation angles of the tilted vertical beams. The larger the rotation angles of the tilted vertical beams are, the greater the geometric deformations of the printed structures. Originality/value Three vertical beams and six horizontal beams constitute the supporting parts of the frame of a delta-robot 3D printer. In this paper, the orientations of tilted vertical beams are shown to have a significant influence on 3D printing accuracy. However, the effect of tilted vertical beams on 3D printing accuracy is difficult to capture by instruments. To reveal the 3D printing error mechanisms under the condition of tilted vertical beams, the error generation mechanism and the quantitative influence of tilted vertical beams on 3D printing accuracy are studied by simulating the parallel motion mechanism of a delta-robot 3D printer with tilted vertical beams.


Sign in / Sign up

Export Citation Format

Share Document