Effect of pre-strain and KMnO4 oxidation of carbon nanotubes embedded in polyurethane on strain dependent electrical resistance of the composite

Sensor Review ◽  
2018 ◽  
Vol 38 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Petr Slobodian ◽  
Pavel Riha ◽  
Robert Olejnik ◽  
Jiri Matyas

Purpose The synergistic effect of functionalization of multi-walled carbon nanotubes (CNT) using KMnO4 oxidation and initial tensile deformation on the electrical resistance of nanotube network/polyurethane composite subjected to elongation was studied. Design/methodology/approach Though the initial deformation irreversibly changed the arrangement of carbon nanotube network, subsequent cyclic elongation confirmed stable resistance values. The increased strain-dependent resistance of stimulated nanotube network/polyurethane composite was demonstrated by monitoring vibration of tambour leather after a bead impact and finger flexion. Findings The results showed a tenfold composite resistance increase for the composite prepared from KMnO4 oxidized nanotubes, quantified by a so-called gauge factor, from a value of about 20 in comparison to the network prepared from pristine nanotubes. This is a substantial increase, which ranks the stimulated composite among materials with the highest electromechanical response. Originality/value The results in this paper are new and have not been published yet. The paper combines different ideas which are developed together. It presents a new concept of synergistic effect of CNT oxidation and application of pre-strain simulation. Oxidation and pre-strain increases by several times the sensitivity of the tested composites which are predetermined for use as strain sensors of various sizes and shapes.

2014 ◽  
Vol 605 ◽  
pp. 235-238
Author(s):  
Roman Bořuta ◽  
Petr Slobodian ◽  
Robert Olejnik ◽  
Michal Machovsky ◽  
Pavel Riha

The effect of oxidation of multi-walled carbon nanotubes by KMnO4on the electrical resistance of a nanotube network/polyurethane composite subjected to bending has been studied. In this respect, the main achievement is a multiple increase of gauge factor for the evaluating electromechanical properties of the composite after nanotube oxidation with KMnO4. It indicates favorable properties of the composite for its use as a high-deformation strain-sensing element.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 84
Author(s):  
Yi-Ming Jen ◽  
Hao-Huai Chang ◽  
Chien-Min Lu ◽  
Shin-Yu Liang

Even though the characteristics of polymer materials are sensitive to temperature, the mechanical properties of polymer nanocomposites have rarely been studied before, especially for the fatigue behavior of hybrid polymer nanocomposites. Hence, the tensile quasi-static and fatigue tests for the epoxy nanocomposites reinforced with multi-walled carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) were performed at different temperatures in the study to investigate the temperature-dependent synergistic effect of hybrid nano-fillers on the studied properties. The temperature and the filler ratio were the main variables considered in the experimental program. A synergistic index was employed to quantify and evaluate the synergistic effect of hybrid fillers on the studied properties. Experimental results show that both the monotonic and fatigue strength decrease with increasing temperature significantly. The nanocomposites with a MWCNT (multi-walled CNT): GNP ratio of 9:1 display higher monotonic modulus/strength and fatigue strength than those with other filler ratios. The tensile strengths of the nanocomposite specimens with a MWCNT:GNP ratio of 9:1 are 10.0, 5.5, 12.9, 23.4, and 58.9% higher than those of neat epoxy at −28, 2, 22, 52, and 82 °C, respectively. The endurance limits of the nanocomposites with this specific filler ratio are increased by 7.7, 26.7, 5.6, 30.6, and 42.4% from those of pristine epoxy under the identical temperature conditions, respectively. Furthermore, the synergistic effect for this optimal nanocomposite increases with temperature. The CNTs bridge the adjacent GNPs to constitute the 3-D network of nano-filler and prevent the agglomeration of GNPs, further improve the studied strength. Observing the fracture surfaces reveals that crack deflect effect and the bridging effect of nano-fillers are the main reinforcement mechanisms to improve the studied properties. The pullout of nano-fillers from polymer matrix at high temperatures reduces the monotonic and fatigue strengths. However, high temperature is beneficial to the synergistic effect of hybrid fillers because the nano-fillers dispersed in the softened matrix are easy to align toward the directions favorable to load transfer.


Soft Matter ◽  
2013 ◽  
Vol 9 (43) ◽  
pp. 10343 ◽  
Author(s):  
Deepalekshmi Ponnamma ◽  
Kishor Kumar Sadasivuni ◽  
Michael Strankowski ◽  
Qipeng Guo ◽  
Sabu Thomas

2016 ◽  
Vol 166 ◽  
pp. 45-49 ◽  
Author(s):  
Juan Bernal-Martínez ◽  
Rafael Godínez-Fernández ◽  
Manuel Roman-Aguirre ◽  
Alfredo Aguilar-Elguezabal

2018 ◽  
Vol 52 (24) ◽  
pp. 3325-3340 ◽  
Author(s):  
Doo-Yeol Yoo ◽  
Ilhwan You ◽  
Hyunchul Youn ◽  
Seung-Jung Lee

This study investigates the effect of nanomaterials on the piezoresistive sensing capacity of cement-based composites. Three different nanomaterials—multi-walled carbon nanotubes, graphite nanofibers, and graphene oxide—were considered along with a plain mortar, and a cyclic compressive test was performed. Based on a preliminary test, the optimum flowability was determined to be 150 mm in terms of fiber dispersion. The electrical resistivity of the composites substantially decreased by incorporating 1 wt% multi-walled carbon nanotubes, but only slightly decreased by including 1 wt% graphite nanofibers and graphene oxide. This indicates that the use of multi-walled carbon nanotubes is most effective in improving the conductivity of the composites compared to the use of graphite nanofibers and graphene oxide. The fractional change in resistivity of the composites with nanomaterials exhibited similar behavior to that of the cyclic compressive load, but partial reversibility in fractional change in resistivity was obtained beyond 60% of the peak load. A linear relationship between the fractional change in resistivity and cyclic compression strain (up to 1500 με) was observed in the composites with multi-walled carbon nanotubes, and the gauge factor was found to be 166.6. It is concluded that cement-based composites with 1 wt% multi-walled carbon nanotubes can be used as piezoresistive sensors for monitoring the stress/strain generated in concrete structures.


Author(s):  
Baoguo Han ◽  
Xun Yu ◽  
Jinping Ou

The carbon nanotubes (CNTs)/cement composites with different doping levels of multi-walled carbon nanotubes (MWNTs) and water/cement ratios are fabricated. By comparing the responses of electrical resistance of these CNTs/cement composites to compressive stress, the effects of MWNT doping level and water/cement ratio on the piezoresistive sensitivity of composites are investigated. Experimental results indicate that the piezoresistive sensitivities of CNTs/cement composites with 0.05 wt. %, 0.1 wt. % and 1 wt. % of MWNTs firstly increase and then decrease with the increase of CNT doping levels. The electrical resistance of CNTs/cement composites 0.6 water/cement ratio is more sensitive to compressive stress than that of composites with 0.45 water/cement ratio.


2016 ◽  
Vol 6 (13) ◽  
pp. 4794-4801 ◽  
Author(s):  
Ammar Bin Yousaf ◽  
M. Imran ◽  
Akif Zeb ◽  
Xiao Xie ◽  
Kuang Liang ◽  
...  

Synergistic effect of rGO/MWCNTs composite supported Pd nanocubes enhanced the performance of direct formic acid fuel cells.


RSC Advances ◽  
2018 ◽  
Vol 8 (16) ◽  
pp. 8920-8928 ◽  
Author(s):  
Changqing Fang ◽  
Rong Yang ◽  
Zisen Zhang ◽  
Xing Zhou ◽  
Wanqing Lei ◽  
...  

Multiple-walled carbon nanotubes (MWCNTs) were employed as a reinforcing filler to study the synergistic effect between CNTs and rPET/TPU composites.


Sign in / Sign up

Export Citation Format

Share Document