Magnetic suction compression-type gap sensor based on fiber Bragg grating sensing

Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lijun Meng ◽  
Xinyu Li ◽  
Xin Tan

Purpose A fiber Bragg grating (FBG) sensor was designed to measure the door gap of automobile bodies. Design/methodology/approach The gap sensor was designed through a combination of the sliding wedge and cantilever beam, involving a magnetic force installation and arc structure of the force transmission point. Moreover, the sliding block adopted an anti-magnetic and wear-resistant material and the temperature compensation of the two FBGs was conducted. The magnetic force and contact stress of the sensor were examined to ensure that the sensor exhibited a certain magnetic attraction force and fatigue life. The performance of the gap sensor was examined experimentally. Findings The sensor could measure gaps with dimensions of 5 mm to 11 mm, with a sensitivity and measurement accuracy of 150.9 pm/mm and 0.0063% F.S., respectively. Moreover, the sensor exhibited a small gap sensitivity, with a repeatability error of 0.15%, anti-creep properties and magnetic interference abilities. Originality/value The sensor is compact and easy to install, as well as use for multiple sensor locations, with a maximum size of 43 mm, a mass of 26 g and installation type of magnetic suction. It can be used for high-precision static and dynamic measurements of the door inner clearance with a resolution of 0.013 mm to improve the efficiency of internal clearance on-line analysis and assembly quality inspection.

2013 ◽  
Vol 11 (3) ◽  
pp. 030602-30605 ◽  
Author(s):  
Huiyong Guo Huiyong Guo ◽  
Jianguan Tang Jianguan Tang ◽  
Xiaofu Li Xiaofu Li ◽  
Yu Zheng Yu Zheng ◽  
Hua Yu Hua Yu ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1263 ◽  
Author(s):  
Haihu Yu ◽  
Wenjing Gao ◽  
Xin Jiang ◽  
Huiyong Guo ◽  
Shan Jiang ◽  
...  

On-line fabricated fiber Bragg grating (FBG) array and its sensing potentials have attracted plenty of attention in recent years. In this paper, FBG arrays are written on-line on a two-mode fiber, and this two-mode fiber Bragg grating (TM-FBG) is further experimentally investigated for temperature and curvature sensing. The responses of this sensor were characterized by 11.2 pm/°C and −0.21 dB/m−1 for temperature and curvature, respectively. Based on the measurements, a dual-parameter fiber sensing system was developed, which can realize the quasi-distributed, simultaneous detection of temperature and curvature, making it suitable for structural health monitoring or perimeter security.


2013 ◽  
Vol 462-463 ◽  
pp. 32-38
Author(s):  
Shi Bin Liang ◽  
Hong Lei Yang ◽  
Xue Peng Miao ◽  
Min Cao ◽  
Ming Chang

Snow and ice disasters on power system safe and reliable operation of the transmission line has a great threaten.An overhead conductor tension sensor based on fiber Bragg grating is developed.The sensor contains a strain sensor module and a temperature compensation module which can offer temperature compensation for strain sensing module.The sensor connected to the tower and the insulator with metallic clamps.If there is ice on the transmission line,the tension of the sensor sensing module of the center wavelength will corresponding change,and the ice condition of the transmission wires can be reflected by the center wavelength variation.Experiment indicates that the tension sensitivity coefficient of the sensor is 9.8 pm/kN,the repeatability error is 1.78% FS,the nonlinear error is2.4% FS, the hysteresis is 1.5% FS.


Sensor Review ◽  
2019 ◽  
Vol 39 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Yongxing Guo ◽  
Jianjun Fu ◽  
Longqi Li ◽  
Li Xiong

Purpose Centrifugal model tests can accelerate the characterization of landslides and demonstrate the form of slope failure, which is an important measure to research its instability mechanisms. Simply observing the slope landslide before and after a centrifugal model test cannot reveal the processes involved in real-time deformation. Electromagnetic sensors have severed as an existing method for real-time measurement, however, this approach has significant challenges, including poor signal quality, interference, and complex implementation and wiring schemes. This paper aims to overcome the shortcomings of the existing measurement methods. Design/methodology/approach This work uses the advantages of fiber Bragg grating (FBG) sensors with their small form-factor and potential for series multiplexing in a single fiber to demonstrate a monitoring strategy for model centrifugal tests. A slope surface deformation displacement sensor, FBG anchor sensor and FBG anti-slide piling sensor have been designed. These sensors are installed in the slope models, while centrifugal acceleration tests under 100 g are carried out. Findings FBG sensors obtain three types of deformation information, demonstrating the feasibility and validity of this measurement strategy. Originality/value The experimental results provide important details about instability mechanisms of a slope, which has great significance in research on slope model monitoring techniques and slope stability.


2012 ◽  
Vol 503-504 ◽  
pp. 1672-1678
Author(s):  
Zhao Yang ◽  
Xiao Ping Xu ◽  
Chuan Li ◽  
Yan Chen ◽  
Jiang Chun Xu ◽  
...  

The charge unit supply power when the power is cut off. It has been the necessary components in every type of substations to ensure the continuous operations of electric relays, automatic devices and circuit breakers. By using contacting electrical insulating Fiber Bragg Grating temperature sensor, the monitored equipment can be measured and controlled under the safe temperature. The temperatures of three fans and environment have been surveyed since June 6, 2010, in the charge unit of Yanjin substation’s main control room. The real-time monitoring of 24-hours indicates that the temperature changes in the range of 1°C. At the long-term of 479 days, the average daily minimum temperature range of three fans is 12.48°C, and the maximum range is 23.07°C. The maximum temperature is 39.14°C on April 30, 2011, and the minimum temperature is 23.98°C on January 10, 2011. The daily average of ambient temperature range is 12.04 °C, the maximum temperature is 38.38 °C on July 16, 2010, and the minimum temperature is 26.34 °C on January 9, 2011. The maximum difference between the temperature of fan and the ambient temperature is 7.60 °C on October 23, 2010. According to the relevant standards and monitoring results, the maximum threshold of fan temperature is defined to 85°C, and the threshold of temperature rise is 20°C.


2017 ◽  
Vol 17 (1) ◽  
pp. 108-117 ◽  
Author(s):  
Ebrahim Oromiehie ◽  
B Gangadhara Prusty ◽  
Paul Compston ◽  
Ginu Rajan

With the increasing use of automated fiber placement method for manufacturing highly precise bespoke composite components in the aerospace industry, the level of manufacturing defects within the laminate structure needs to be monitored and minimized for structural integrity. One of the main common defects in automated fiber placement process is misalignment between the tape paths in successive courses which leads to non-integrity of laminate and consequently significant reduction in mechanical strength of the laminate. Therefore, it is necessary to find an appropriate inspection method to monitor and identify these processing defects at the earlier stages of manufacturing. Since optical fiber Bragg grating sensors are being increasingly utilized for structural health monitoring in composite materials and as they were successfully implemented by Oromiehie et al. in their earlier work for on-line lay-up process monitoring, the same methodology is once again tried for identifying the misalignment defects in automated fiber placement process. The experiments are carried out on glass-fiber/nylon laminate with embedded fiber Bragg gratings for the automated tape placement method. The defects due to misalignment are identified by the fiber Bragg grating sensors through their reflected wavelength changes during the automated manufacturing process. The analysis of results indicates that the fiber Bragg grating sensors can be reliably implemented for on-line defect monitoring during the automated fiber placement process to ensure the quality of final product and maintain the expected design life.


Sensor Review ◽  
2019 ◽  
Vol 39 (1) ◽  
pp. 87-98 ◽  
Author(s):  
Wenlong Liu ◽  
Yongxing Guo ◽  
Li Xiong ◽  
Yi Kuang

Purpose The purpose of this paper is to present the latest sensing structure designs and principles of information detection of fiber Bragg grating (FBG) displacement sensors. Research advance and the future work in this field have been described, with the background that displacement and deformation measurements are universal and crucial for structural health monitoring. Design/methodology/approach This paper analyzes and summarizes the existing FBG displacement sensing technologies from two aspects principle of information detection (wavelength detection, spectral bandwidth detection, light intensity detection, among others) and principle of the sensing elastomer structure design (cantilever beam type, spring type, elastic ring type and other composite structures). Findings The current research on developing FBG displacement sensors is mainly focused on the sensing method, the construction and design of the elastic structure and the design of new information detection method. The authors hypothesize that the following research trends will be strengthened in future: temperature compensation technology for FBG displacement sensors based on wavelength detection; a study of more diverse elastic structures; and fiber gratings manufactured with special fibers will greatly improve the performance of sensors. Originality/value The latest sensing structure designs and principles of information detection of FBG displacement sensors have been proposed, which could provide important reference for research group.


Sensor Review ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 345-352
Author(s):  
Jiang Chen ◽  
Junli Zheng ◽  
Feng Xiong

PurposeThe spatial resolution of seepage monitoring methods based on fiber Bragg grating (FBG) temperature sensing technology is limited by the distance between measurement points. Improving the spatial resolution for a given number of measurement points is a prerequisite for popularizing this technology in the seepage monitoring of rockfill dams. The purpose of this paper is to address this problem.Design/methodology/approachThis paper proposes a mobile-distributed seepage monitoring method based on the FBG-hydrothermal cycling seepage monitoring system. In this method, the positions of the measurement points are changed by freely dragging the FBG sensing cluster within the inner tube of a dual-tube structure, consisting of an inner polytetrafluoroethylene tube and outer polyethylene of raised temperature resistance heating tube.FindingsA seepage velocity calibration test was carried out using the improved monitoring system. The results showed that under a constant seepage velocity, the use of the dual-tube structure enables faster cooling, and the cooling rate accelerates with an increase in the diameter of the inner tube. The use of the dual-tube structure can improve the sensitivity of the seepage evaluation indexζvto the seepage velocity. When the inner diameter increases,ζvbecomes more sensitive to the seepage velocity.Originality/valueA mobile-distributed seepage monitoring method based on FBG sensing technology is proposed in which the FBG sensors are not fixed. Instead, the positions of the measurement points are changed to improve the spatial resolution. Meanwhile, the use of the dual-tube structure in the presented monitoring system can improve its sensitivity.


Sign in / Sign up

Export Citation Format

Share Document