Impact of integrated HSE management system on power generation in Iran by a unique mathematical programming approach

2016 ◽  
Vol 13 (1) ◽  
pp. 82-90 ◽  
Author(s):  
A. Azadeh ◽  
S. Motevali Haghighi ◽  
M. Hosseinabadi Farahani ◽  
R. Yazdanparast

Purpose Concern for health, safety and environment (HSE) is increasing in many developing countries, especially in energy industries. Improving power plants efficiencies in terms of HSE issues requires considering these issues in performance assessment of power generation units. This study aims to discuss the use of data envelopment analysis methodology for the performance assessment of electrical power plants in Iran by considering HSE and conventional indicators. Design/methodology/approach Installed capacity, fuel consumption, labor cost, internal power, forced outage hours, operating hours and total power generation along with HSE indices are taken into consideration for determining the efficiency of 20 electric power plants or decision-making units (DMUs). Moreover, DMUs are ranked based on their relative efficiency scores. Findings Results show that HSE factors are significant in performance assessment of the power plants studied in this research, and among HSE factors, health has the most powerful impact on the efficiency of the power plants. Originality/value The approach of this study could be used for continuous improvement of combined HSE and conventional factors. It would also help managers to have better comprehension of key shaping factors in terms of HSE.

Author(s):  
Yong Tian ◽  
Wen-Jing Liu ◽  
Qi-jie Jiang ◽  
Xin-Ying Xu

With the development of biomass power generation technology, biomass waste has a more excellent recycling value. The article establishes a biomass waste inventory model based on the material flow analysis method and predicts raw material waste’s energy utilization potential. The results show that the amount of biomass waste generated from 2016 to 2020 is on the rise. In 2020, biomass waste’s energy utilization can reach 107,802,300 tons, equivalent to 1,955.28PJ of energy. Through biomass energy analysis and emission analysis, the results show that the biomass waste can generate 182.02 billion kW⋅h in 2020, which can replace 35.9% of the region’s total power consumption, which is compared with the traditional power generation method under the same power generation capacity. Power generation can reduce SO2 emissions by 250,400 tons, NOx emissions by 399,300 tons, and PM10 emissions by 49,700 tons. Reduce direct economic losses by 712 million yuan. Therefore, Chinese promotion of the recycling of biomass waste and the acceleration of the biomass energy industry’s development is of great significance for reducing pollutant emissions and alleviating energy pressure.


Author(s):  
David J. Calhoun ◽  
Mark A. Gake

Operating nuclear power plants typically have backup electrical power supplied by diesel generators. Although backup power systems are designed with redundant trains, each capable of supplying the power requirements for safe shutdown equipment, there is a common-mode seismic failure risk inherent in these customary backup power arrangements. In an earthquake, multiple equipment trains with similar, if not identical, components located side-by-side are exposed to inertial forces that are essentially identical. In addition, because of their similar subcomponent configurations, seismic fragilities are approximately equal. In that case, the probability of multiple backup power system failures during an earthquake is likely to be dependent on, and nearly the same as, the individual seismic failure probability of each equipment train. Post-earthquake inspections at conventional multiple unit power stations over the last 40 years identified this common-mode seismic failure risk long before the tsunami-related common-mode failures of diesel generators at Fukushima Daiichi in March 2011. Experience data from post-earthquake inspections also indicate that failure probabilities of diverse sets of power generation equipment are independent and inherently less susceptible to common-mode failures. This paper demonstrates that employing diverse backup power designs will deliver quantifiable improvements in electrical system availability following an earthquake. These improvements are illustrated from available literature of post-earthquake inspection reports, along with other firsthand observations. A case study of the seismic performance of similarly configured electrical power generation systems is compared to the performance of diverse sets of electrical power systems. Seismic probabilistic risk analyses for several system configurations are presented to show the benefit of improved post-earthquake availability that results from designing new backup power systems with greater diversity.


2014 ◽  
Vol 525 ◽  
pp. 355-360
Author(s):  
Wei Zheng Kong ◽  
Bi Bin Huang ◽  
Qiong Hui Li ◽  
Xiao Lu Wang

In this paper, the change of fossil energy consumption, carbon dioxide (CO2) and pollutant emissions are calculated when petroleum based vehicles (PBVs) are taken place by EVs based upon the full-cycle energy efficiency theory with the energy efficiency measured from well to wheel.. Calculation results show that the fossil energy consumption, CO2, monoxide (CO) and hydrocarbon (HC) emissions can be reduced with the substitution of EVs for vehicles that burn gasoline (GVs), but nitrogen oxides (NOx) and sulfur dioxide (SO2) emissions increase. When vehicles that burn diesel (DVs) are replaced by EVs, the emissions of pollutants except SO2 will be reduced, but the emissions of CO2 and SO2 will increase. Considering the proportion of coal-fired power generation to the total power generation in China, the goal of energy conservation and emission reduction cannot be perfectly achieved by the substitution of PBVs by EVs. Therefore, the proportion of clean energy generation should be increased in China and technological updating of coal-fired power plants for reducing CO2 and pollutant emissions are necessary as well. Besides, GVs, other than DVs, should be replaced by EVs from the perspective of energy conservation and CO2 emission.


Author(s):  
Sajjad Akbar ◽  
Shahab Khusnood

Electricity is the engine for the growth of economy of any country. Total installed electricity generation capacity of Pakistan is presently approx 20,000 MW as given in Table-1. Despite this, almost 40% of the population is without electricity. Pakistan has been blessed with tremendous resources for electrical power generation with hydel, coal, renewable energy resources and Nuclear power. Hydel, coal potential of more than 40,000 MW and 10,000 MW are available but only 15% of hydroelectric potential has been harnessed so for where as only 150 MW power plant on indigenous coal has been set up. To exploit Pakistan hydel and coal resources for power generation large investments are needed which Pakistan economy can not afford. Govt. of Pakistan has created an organization of private power and infrastructure board (PPIB) to facilitate private sector in the participation of power generator. PPIB is tapping the resources and facilitating the private sector for establishment of power projects. Pakistan is collaborating with China for establishment of Nuclear Power Plants and plan to generate up to 10,000 MW by year 2025. Renewable energy resources are also required to be tapped. This paper will focus on the Pakistan power generation potential by utilizing local resources keeping in view the next 20 year supply and demand position.


2021 ◽  
Author(s):  
Sahishnukumar Shah

The small-scale vertical axis wind turbine is designed and modeled in this project, considering all aspects of wind turbine such as Blade design, stator design, rotor design and converter system design. Electric Power has become a prime necessity for any country for economic development. The conventional fuel sources for power generation are depleting fast. The favorable alternatives are renewable energy sources. Although more invention has to be carried out in the field of renewable energy sources, every little effort in this direction may provide a solution to reach most economical power generation point. Hence the same topic was selected for Masters Project. The goal of this project is to design a small scale Vertical Axis Wind Turbine, which is capable of producing electrical power even with low wind velocity. It can be placed on road dividers, sidetracks of train or remote places i.e. villages, military camps, where it is not economical to transmit power from power plants. Implementation of such project would reduce the dependence of an industry or remote houses, on electricity board.


2015 ◽  
Vol 17 (3) ◽  
pp. 487-497 ◽  

<div> <p>Landfilling has been considered as the most common method for solid waste disposal in developing countries which is faced with several issues, such as gas emission. Methane as a greenhouse gas is the main landfill gas which could be applied as a fuel for electrical power plants. In this study, the gas emission of Shiraz landfill site was predicted by using USEPA model, for this purpose, after determination of the solid waste physical composition on Shiraz landfill site, the L<sub>0</sub> and k constants were estimated by Monte Carlo method, as well as the rate of gas collection and the rate of electrical power generation capacity were estimated under existing and ideal scenarios. The results showed that gas production would reach its peak up to 5.7&times;10<sup>7 </sup>m<sup>3</sup> year<sup>-1</sup> by 2039. The maximum electrical power generation was also similar to the pattern of gas production in the landfill and would be 2545GWh and 4019GWh for the existing and ideal conditions, respectively in 2039. Results showed that the recovery of biogas at Shiraz landfill could be a desirable alternative in different available waste management options for this city.</p> </div> <p>&nbsp;</p>


2020 ◽  
Vol 211 ◽  
pp. 03003
Author(s):  
Adam Wicaksono ◽  
Ahyahudin Sodri ◽  
Ellyna Chairani

Indonesia’s power generation capacity increased by 3% to reach 64.5 GW from 20017 to 2018, where 86% of the power plants that have been built are fossil-fueled. Limited resources and the impact arising from the production process will impact the environment, thus hindering sustainable development. Therefore, it is needed to set indicators that can be used to evaluate power generation’s sustainability to improve the community’s welfare. This research aims to find sustainability indicators that can be used to assess the electrical power generation system. A total of 51 articles from the snowball sampling approach was analyzed using a qualitative systematic literature review and quantitative method. We found 43 indicators covering economic, social, and environmental dimensions that can be used to assessed Indonesia’s electrical power generation’s sustainability.


2000 ◽  
Author(s):  
Jeppe Grue ◽  
Jens Andersen ◽  
Niels From ◽  
Inger Bach

Abstract In Denmark power generation is extensively based on small combined heat and power plants, which produce electric power and district heating. This work will focus on the small plants around 1 MW in size, which are often unmanned and operating completely automatically. The objective of this work is to formulate a method which can be used to determine the optimal operating strategy for a CHP plant, and that this strategy must be fully automated. The contribution margin of the plant is used as the objective function for the optimization. Finally the method is tested on a small CHP plant, which is a gas engine producing 1.34 MW electrical power and 1.6 MJ/s district heating. The methods, which are developed, can be used in general for the evaluation and optimization of automated strategies for the operation of small-unmanned CHP plants. The strong feature of the method is that it sets an ultimate target that is the best possible one to obtain with a view to any strategy. This provides a basis for the evaluation and optimization of the actual strategy.


Subject Outlook for global coal markets. Significance Thermal coal prices hit a record of 210 dollars per tonne in July 2008 and have declined since 2011. Last year, prices averaged 57 dollars per tonne and until recently struggled to hold above the 45 threshold. The slide is due to environmental concerns, which are shifting power generation towards low-carbon sources. After several years of 300 million tonnes (mt) yearly growth, global coal demand fell by 63 mt in 2014 and by 180 mt in 2015. Although many mines have been shut, production fell by less than demand. Impacts This year Russia may surpass its 2015 production by 10 mt, all of which will be exported. Australia's compliance with Paris emissions reduction targets may thwart domestic coal projects mulled by China's Shenhua and India's Adani. Having lost its export markets, Indonesia is redirecting its coal production towards the slated increase in domestic power generation. Colombia has entered the Indian market thanks to record-low freight rates; their increase may reduce flows to the subcontinent. Japan targets a 26% reduction in emissions for 2030 by limiting coal use to 26% of total power output.


2018 ◽  
Vol 12 (4) ◽  
pp. 675-695
Author(s):  
R. Saravanan ◽  
S. Subramanian ◽  
S. SooriyaPrabha ◽  
S. Ganesan

Purpose Generation scheduling (GS) is the most prominent and hard-hitting problem in the electrical power industry especially in an integrated power system. Countless techniques have been used so far to solve this GS problem for proper functioning of the units in the power system to dispatch the load economically to consumers at once. Therefore, this work aims to study for the best possible function of integrated power plants to obtain the most favourable solution to the GS problem. Design/methodology/approach An appropriate method works in a proper way and assures to give the best solution to the GS problem. The finest function of incorporated power plants should be mathematically devised as a problem and via that the aim of the GS problem to minimize the total fuel cost subject to different constraints will be achieved. In this research work, the latest meta-heuristic and swarm intelligence-based technique called grey wolf optimization (GWO) technique is used as an optimization tool that will work along with the formulated problem for correct scheduling of generating units and thus achieve the objective function. Findings The recommended GWO technique provides the best feasible solution which is optimal in its performance for different test cases in the GS problem of integrated power plant. It is further found that the obtained solutions using GWO method are better than the former reports of other traditional methods in terms of solution excellence. The GWO method is found to be unique in its performance and having superior computational efficiency. Practical implications Decision making is significant for effective operation of integrated power plants in an electrical power system. The recommended tactic implements a modern meta-heuristic procedure that is applied to diverse test systems. The method that is proposed is efficient in providing the best solutions of solving GS problems. The suggested method surpasses the early techniques by offering the most excellent feasible solutions. Thus, it is obvious that the proposed method may be the appropriate substitute to attain the optimal operation of GS problem. Social implications Renewable energy sources are discontinuous and infrequent in nature, and it is tough to predict them in general. Further, integrating renewable energy source-based plants with the conventional plant is extremely difficult to operate and maintain. Operation of integrated power system is full of challenges and complications. To handle those complications and challenges, the GWO algorithm is suggested for solving the GS problem and thus obtain the optimal solution in integrated power systems by considering the reserve requirement, load balance, equality and inequality constraints. Originality/value The proposed system should be further tested on diverse test systems to evaluate its performance in solving a GS problem and the results should be compared. Computation results reveal that the proposed GWO method is efficient in attaining best solution in GS problem. Further, its performance is effectively established by comparing the result obtained by GWO with other traditional methods.


Sign in / Sign up

Export Citation Format

Share Document