Experimental analysis of stresses in weld metal subjected to tensile load

2016 ◽  
Vol 13 (4) ◽  
pp. 281-287 ◽  
Author(s):  
Sampath S.S. ◽  
Nethri Rammohan ◽  
Reema Shetty ◽  
Sawan Shetty ◽  
Chithirai Pon Selvan M.

Purpose Stainless steel is one of the most important elements in structural design and application, and due to its excellent properties, it is widely used in industries for conventional structural engineering applications, such as thermal power plants, nuclear power plants, civil constructions, etc. (Mishra et al., 2014). A traditional tensile testing machine cannot determine the transversal stress–strain curves (Olden, 2002, 2013). Design/methodology/approach In the present study, identical mild steel specimen parts are welded at different intervals and then subjected to tensile loading. Welding is carried along the length of the specimen. Induced stresses are determined at the welded intervals and the stress–strain curve is obtained. Findings By considering the temperature of the weld at the interface, thermal stresses are determined. Brinell hardness number is determined at the interface and the base metal. Also, the change in the hardness at the heat-affected zone (HAZ) is found. Validation is carried out by comparing the results with the original stress–strain curve. Originality/value In the HAZ, there is a drop in the hardness number, which means that there is a change in the material property due to welding. The thermal stresses which develop at the interface can also play a very important role for property change. Results show that the stress developed due to the rise in temperature is lesser than that of normal stresses.

1970 ◽  
Vol 185 (1) ◽  
pp. 1149-1158 ◽  
Author(s):  
K. Bitans ◽  
P. W. Whitton

Shear stress-shear strain curves for o.f.h.c. copper at room temperature have been obtained at constant shear strain rates in the range 1 to 103s-1, using thin walled tubular specimens in a flywheel type torsion testing machine. Results show that, for a given value of strain, the stress decreases when the rate of strain is increased. Moreover, the elastic portion of the stress-strain curve tends to disappear as the rate of strain is increased. It is postulated that these effects are due to the formation of adiabatic shear bands in the material when the given rate of strain is impressed rapidly enough. A special feature of the design of the testing machine used is the rapid application of the chosen strain rate.


1937 ◽  
Vol 135 (1) ◽  
pp. 467-483
Author(s):  
R. J. Lean ◽  
H. Quinney

The paper contains an account of a research into the effect on metals of different speeds of fracture, using a specially designed high-speed testing machine which is described in detail. The experiments were conducted both in this machine and in a 5-ton variable-speed autographic tensile machine, on five steels, the rate of loading being varied for each. With the high-speed machine toughness, ductility, time to produce fracture, and the stress-strain curve were obtained. The results of these combined tests, given in tables and graphs, show that there is a marked increase in stress due to higher speed of testing; and also that the work required to cause fracture increases with the speed. For mild steel the stress at the initial yield point was found to be in excess of that at the maximum point, when the speed of testing was increased the ductility did not appear to suffer.


1987 ◽  
Vol 65 (9) ◽  
pp. 1878-1883 ◽  
Author(s):  
M. H. Sherebrin ◽  
H. A. Bernans ◽  
Margot R. Roach

Some degree of calcification was noted in more than half of the 59 aortas of individuals aged from 15 to 88 we have examined at autopsy. The calcification, which is determined by x-raying the opened and flat aorta, is in patches. We have studied the influence of calcification on stress versus strain, breaking strength, and modulus of elasticity of strips of aorta to determine its importance in vascular disease. Strips of aortic wall 5 × 30 mm were cut with orientation parallel or perpendicular to the vessel axis. Elongation versus load was measured with an Instron tensile testing machine. The true stress and true strain were calculated for both calcified and uncalcified strips from the thoracic and abdominal regions in both orientations. From the stress–strain curve the following values were selected: strain, stress, and slope at 80 mmHg equivalent pressure (1 mmHg = 133.3 Pa); maximum stress, strain, and slope; and breaking stress, strain, and slope if the sample broke. There were statistically significant differences in 13 of the 36 categories between calcified and uncalcified strips. The breaking strength and strain is lower in the calcified strips. The stress–strain curve for the uncalcified strip was mathematically transformed by reducing the amount of elongation so that the curve coincided with that of the calcified strip for eight matched pairs from the same individuals. The calcification appears to immobilize part of the strip, probably causing the boundary of the calcified tissue to be a region of high stress where tissue breakdown can occur.


2016 ◽  
Vol 12 (1) ◽  
pp. 80-92 ◽  
Author(s):  
Victor Iliev Rizov

Purpose – The purpose of this paper is to perform a theoretical analysis of non-linear delamination fracture in cantilever beam opened notch (CBON) configuration. It is assumed that the non-linear mechanical behavior of the CBON can be described by using a stress-strain curve with power-law hardening. Design/methodology/approach – The fracture analysis is carried-out by applying the integration contour independent J-integral. For this purpose, a model based on the technical beam theory is used. Equation is derived for determination of the CBON specimen curvature in elastic-plastic stage of deformation. The equation is solved by using the MatLab program system. Solutions of the J-integral are obtained at linear-elastic as well as elastic-plastic behavior of the CBON. The influence of the power-law exponent on the non-linear fracture is evaluated. Findings – The analysis reveals that the J-integral value increases when the exponent of the power-law increases. The solution obtained here is very useful for parametric analyses of the non-linear fracture behavior, since the simple formulas derived capture the essentials of the fracture response. Practical implications – Beside for parametric investigations, the solution obtained here can also be applied for calculating the critical J-integral value at non-linear behavior using experimentally determined critical fracture load at the onset of crack growth from the initial crack tip position in the CBON configuration. Originality/value – An analysis is performed of the non-linear fracture in the CBON configuration by applying the J-integral approach, assuming that the mechanical response can be modeled using a stress-strain curve with power-law hardening.


1934 ◽  
Vol 7 (1) ◽  
pp. 197-211
Author(s):  
B. L. Davies

Abstract 1. A simple “extensometer” has been devised for the more accurate measurement of small elongations in hard rubber samples, thus enabling stress-strain curves to be obtained on a standard tensile testing machine. 2. The form of the curve has been described more fully than heretofore. It shows that hard rubber does not deform exactly in accordance with Hooke's Law, but exhibits plastic flow. 3. Deviations from Hooke's Law shown by the experimental curves depend upon the speed of stretching. Increased speed of elongation has been found to give higher readings of tensile strength. 4. Prolonged mastication of the rubber gives a weaker product, similar effects being obtainable by the use of a neutral softener. 5. The effects of increasing time of vulcanization have been described. The range of curves showing transition from over-cured soft rubber to ebonite indicates that the hard rubber curve is possibly related to the initial portion of the soft rubber curve. The plasticity of the overvulcanized rubber, as indicated by the deviation from Hooke's Law, increased with time of vulcanization until the “semi-ebonite” stage was reached. 6. The leather-like “semi-ebonites” differed from soft and hard rubber inasmuch as they were extremely sensitive to small changes in time of vulcanization, and inasmuch as their plasticity was such that the velocity of plastic flow was comparable with the rate of pulling (1 in. per minute), at a particular point in the test they experienced a large elongation at constant load, i. e., the velocity of flow was equal to the speed of pulling. Their plasticity decreased with further vulcanization. 7. The longest cures in the above-mentioned group gave products which were rigid at room temperature. Since these must be more resistant to shock than vulcanizates in a higher state of cure, it seems that the best technical cure of ebonite for mechanical purposes is that which gives maximum tensile strength combined with the property of undergoing considerable plastic flow (of the order of 5 per cent) at the constant maximum load, and at an arbitrarily fixed rate of stretching, the temperature being commensurate with the thermal conditions of service. Such a cure is clearly indicated by the stress-strain curve. 8. Accelerated ebonite mixings are more sensitive to time of cure than rubber-sulfur stocks without accelerators. An accelerator may produce very little effect on the tensile strength and breaking elongation, but may yield a stock which “scorches” readily. This prevulcanization was detrimental to the mechanical properties of the vulcanizate, even though it was so slight that its presence was not detected during normal processing. 9. Mineral rubber in ebonite stocks has been shown to accelerate the cure as indicated by the stress-strain curve. 10. Stocks containing high loadings of gas black gave vulcanizates which were weak and brittle. The effect of the black on the stiffness was similar to that produced by further cure. 11. The stress-strain curve provides a reliable means whereby stocks containing different accelerators and other compounding ingredients may be compared at equivalent states of vulcanization.


2017 ◽  
Vol 8 (5) ◽  
pp. 516-529 ◽  
Author(s):  
Victor Rizov

Purpose The purpose of this paper is to perform a theoretical analysis of delamination fracture behaviour of the Crack Lap Shear layered beam configuration taking into account the material non-linearity. A delamination crack located arbitrarily along the beam height was considered in this study. Design/methodology/approach The beam mechanical behaviour was described by using the Ramberg-Osgood stress-strain relation. Fracture was analysed by applying the J-integral approach. Besides by using symmetric Ramberg-Osgood stress-strain curve, fracture was investigated also by Ramberg-Osgood stress-strain curve that is not symmetric with respect to tension and compression. The J-integral solutions were verified by performing elastic-plastic analyses of the strain energy release rate. Findings The effects of crack location and material properties on the non-linear fracture behaviour were evaluated. It was found that the material non-linearity leads to increase of the J-integral values. Therefore, the material non-linearity has to be taken into account in fracture mechanics based safety design of structural members composed by layered materials. The analytical solutions derived are very useful for parametric investigations of delamination fracture with considering the material non-linearity. The results obtained can be applied for optimisation of the beam structure with respect to fracture performance. Originality/value The present study contributes for the understanding of delamination fracture in layered beams that exhibit non-linear material behaviour.


2019 ◽  
Vol 10 (6) ◽  
pp. 766-791 ◽  
Author(s):  
Fatemeh FaghihKhorasani ◽  
Mohammad Zaman Kabir ◽  
Mehdi AhmadiNajafabad ◽  
Khosrow Ghavami

Purpose The purpose of this paper is to provide a method to predict the situation of a loaded element in the compressive stress curve to prevent failure of crucial elements in load-bearing masonry walls and to propose a material model to simulate a compressive element successfully in Abaqus software to study the structural safety by using non-linear finite element analysis. Design/methodology/approach A Weibull distribution function was rewritten to relate between failure probability function and axial strain during uniaxial compressive loading. Weibull distribution parameters (shape and scale parameters) were defined by detected acoustic emission (AE) events with a linear regression. It was shown that the shape parameter of Weibull distribution was able to illustrate the effects of the added fibers on increasing or decreasing the specimens’ brittleness. Since both Weibull function and compressive stress are functions of compressive strain, a relation between compressive stress and normalized cumulative AE hits was calculated when the compressive strain was available. By suggested procedures, it was possible to monitor pretested plain or random distributed short fibers reinforced adobe elements (with AE sensor and strain detector) in a masonry building under uniaxial compression loading to predict the situation of element in the compressive stress‒strain curve, hence predicting the time to element collapse by an AE sensor and a strain detector. In the predicted compressive stress‒strain curve, the peak stress and its corresponding strain, the stress and strain point with maximum elastic modulus and the maximum elastic modulus were predicted successfully. With a proposed material model, it was illustrated that the needed parameters for simulating a specimen in Abaqus software with concrete damage plasticity were peak stress and its corresponding strain, the stress and strain point with maximum elastic modulus and the maximum elastic modulus. Findings The AE cumulative hits versus strain plots corresponding to the stress‒strain curves can be divided into four stages: inactivity period, discontinuous growth period, continuous growth period and constant period, which can predict the densifying, linear, non-linear and residual stress part of the stress‒strain relationship. By supposing that the relation between cumulative AE hits and compressive strain complies with a Weibull distribution function, a linear analysis was conducted to calibrate the parameters of Weibull distribution by AE cumulative hits for predicting the failure probability as a function of compressive strain. Parameters of m and θ were able to predict the brittleness of the plain and tire fibers reinforced adobe elements successfully. The calibrated failure probability function showed sufficient representation of the cumulative AE hit curve. A mathematical model for the stress–strain relationship prediction of the specimens after detecting the first AE hit was developed by the relationship between compressive stress versus the Weibull failure probability function, which was validated against the experimental data and gave good predictions for both plain and short fibers reinforced adobe specimens. Then, the authors were able to monitor and predict the situation of an element in the compressive stress‒strain curve, hence predicting the time to its collapse for pretested plain or random distributed short fibers reinforced adobe (with AE sensor and strain detector) in a masonry building under uniaxial compression loading by an AE sensor and a strain detector. The proposed model was successfully able to predict the main mechanical properties of different adobe specimens which are necessary for material modeling with concrete damage plasticity in Abaqus. These properties include peak compressive strength and its corresponding axial strain, the compressive strength and its corresponding axial strain at the point with maximum compressive Young’s modulus and the maximum compressive Young’s modulus. Research limitations/implications The authors were not able to decide about the effects of the specimens’ shape, as only cubic specimens were chosen; by testing different shape and different size specimens, the authors would be able to generalize the results. Practical implications The paper includes implications for monitoring techniques and predicting the time to the collapse of pretested elements (with AE sensor and strain detector) in a masonry structure. Originality/value This paper proposes a new method to monitor and predict the situation of a loaded element in the compressive stress‒strain curve, hence predicting the time to its collapse for pretested plain or random distributed short fibers reinforced adobe (with AE sensor and strain detector) in a masonry building under uniaxial compression load by an AE sensor and a strain detector.


Author(s):  
Tran Manh Tien ◽  
Xuan Hong Vu ◽  
Dao Phuc Lam ◽  
Pham Duc Tho

A big question in the numerical approaches for the mechanical behavior of the textile-reinforced concrete (TRC) composite under tensile loading is how to model the cracking of the cementitious matrix. This paper presents numerical results of 3-D modeling of TRC composite in which the non-linear behavior model was used by considering the cracking for the cementitious matrix. The input data based on the experimental results in the literature. As numerical results, the TRC composite provides a strain-hardening behavior with three phases in which the second one is characterized by the drops in stress on the stress-strain curve. Furthermore, this model could show the failure mode of the TRC specimen with the multi-cracking on its surface after the numerical tests. From this model, the development of a crack from micro-crack to macro at a cross-section was highlighted. The stress jumps in reinforcement textile after each crack was also observed and analyzed. In comparison with the experiment, a good agreement between both results was found for all cases of this study. A parametric study could show the effect of the length and position of the measurement zone on the stress-strain curve of TRC’s mechanical behavior. Keywords: textile reinforced concrete (TRC); cementitious matrix; textile reinforcement; mechanical behaviour; numerical modeling.


Sign in / Sign up

Export Citation Format

Share Document