scholarly journals A NEW TYPE OF STIFF TESTING MACHINE AND COMPLETE STRESS-STRAIN CURVE OF CONCRETE

1977 ◽  
Vol 260 (0) ◽  
pp. 9-19
Author(s):  
YASUO TANIGAWA ◽  
KOZO NISHIKAWA ◽  
YOSHIO KOSAKA
1970 ◽  
Vol 185 (1) ◽  
pp. 1149-1158 ◽  
Author(s):  
K. Bitans ◽  
P. W. Whitton

Shear stress-shear strain curves for o.f.h.c. copper at room temperature have been obtained at constant shear strain rates in the range 1 to 103s-1, using thin walled tubular specimens in a flywheel type torsion testing machine. Results show that, for a given value of strain, the stress decreases when the rate of strain is increased. Moreover, the elastic portion of the stress-strain curve tends to disappear as the rate of strain is increased. It is postulated that these effects are due to the formation of adiabatic shear bands in the material when the given rate of strain is impressed rapidly enough. A special feature of the design of the testing machine used is the rapid application of the chosen strain rate.


1937 ◽  
Vol 135 (1) ◽  
pp. 467-483
Author(s):  
R. J. Lean ◽  
H. Quinney

The paper contains an account of a research into the effect on metals of different speeds of fracture, using a specially designed high-speed testing machine which is described in detail. The experiments were conducted both in this machine and in a 5-ton variable-speed autographic tensile machine, on five steels, the rate of loading being varied for each. With the high-speed machine toughness, ductility, time to produce fracture, and the stress-strain curve were obtained. The results of these combined tests, given in tables and graphs, show that there is a marked increase in stress due to higher speed of testing; and also that the work required to cause fracture increases with the speed. For mild steel the stress at the initial yield point was found to be in excess of that at the maximum point, when the speed of testing was increased the ductility did not appear to suffer.


1987 ◽  
Vol 65 (9) ◽  
pp. 1878-1883 ◽  
Author(s):  
M. H. Sherebrin ◽  
H. A. Bernans ◽  
Margot R. Roach

Some degree of calcification was noted in more than half of the 59 aortas of individuals aged from 15 to 88 we have examined at autopsy. The calcification, which is determined by x-raying the opened and flat aorta, is in patches. We have studied the influence of calcification on stress versus strain, breaking strength, and modulus of elasticity of strips of aorta to determine its importance in vascular disease. Strips of aortic wall 5 × 30 mm were cut with orientation parallel or perpendicular to the vessel axis. Elongation versus load was measured with an Instron tensile testing machine. The true stress and true strain were calculated for both calcified and uncalcified strips from the thoracic and abdominal regions in both orientations. From the stress–strain curve the following values were selected: strain, stress, and slope at 80 mmHg equivalent pressure (1 mmHg = 133.3 Pa); maximum stress, strain, and slope; and breaking stress, strain, and slope if the sample broke. There were statistically significant differences in 13 of the 36 categories between calcified and uncalcified strips. The breaking strength and strain is lower in the calcified strips. The stress–strain curve for the uncalcified strip was mathematically transformed by reducing the amount of elongation so that the curve coincided with that of the calcified strip for eight matched pairs from the same individuals. The calcification appears to immobilize part of the strip, probably causing the boundary of the calcified tissue to be a region of high stress where tissue breakdown can occur.


1934 ◽  
Vol 7 (1) ◽  
pp. 197-211
Author(s):  
B. L. Davies

Abstract 1. A simple “extensometer” has been devised for the more accurate measurement of small elongations in hard rubber samples, thus enabling stress-strain curves to be obtained on a standard tensile testing machine. 2. The form of the curve has been described more fully than heretofore. It shows that hard rubber does not deform exactly in accordance with Hooke's Law, but exhibits plastic flow. 3. Deviations from Hooke's Law shown by the experimental curves depend upon the speed of stretching. Increased speed of elongation has been found to give higher readings of tensile strength. 4. Prolonged mastication of the rubber gives a weaker product, similar effects being obtainable by the use of a neutral softener. 5. The effects of increasing time of vulcanization have been described. The range of curves showing transition from over-cured soft rubber to ebonite indicates that the hard rubber curve is possibly related to the initial portion of the soft rubber curve. The plasticity of the overvulcanized rubber, as indicated by the deviation from Hooke's Law, increased with time of vulcanization until the “semi-ebonite” stage was reached. 6. The leather-like “semi-ebonites” differed from soft and hard rubber inasmuch as they were extremely sensitive to small changes in time of vulcanization, and inasmuch as their plasticity was such that the velocity of plastic flow was comparable with the rate of pulling (1 in. per minute), at a particular point in the test they experienced a large elongation at constant load, i. e., the velocity of flow was equal to the speed of pulling. Their plasticity decreased with further vulcanization. 7. The longest cures in the above-mentioned group gave products which were rigid at room temperature. Since these must be more resistant to shock than vulcanizates in a higher state of cure, it seems that the best technical cure of ebonite for mechanical purposes is that which gives maximum tensile strength combined with the property of undergoing considerable plastic flow (of the order of 5 per cent) at the constant maximum load, and at an arbitrarily fixed rate of stretching, the temperature being commensurate with the thermal conditions of service. Such a cure is clearly indicated by the stress-strain curve. 8. Accelerated ebonite mixings are more sensitive to time of cure than rubber-sulfur stocks without accelerators. An accelerator may produce very little effect on the tensile strength and breaking elongation, but may yield a stock which “scorches” readily. This prevulcanization was detrimental to the mechanical properties of the vulcanizate, even though it was so slight that its presence was not detected during normal processing. 9. Mineral rubber in ebonite stocks has been shown to accelerate the cure as indicated by the stress-strain curve. 10. Stocks containing high loadings of gas black gave vulcanizates which were weak and brittle. The effect of the black on the stiffness was similar to that produced by further cure. 11. The stress-strain curve provides a reliable means whereby stocks containing different accelerators and other compounding ingredients may be compared at equivalent states of vulcanization.


1972 ◽  
Vol 20 (3) ◽  
pp. 355-362 ◽  
Author(s):  
A. Wijler ◽  
J.Schade van Westrum ◽  
A. van den Beukel

2016 ◽  
Vol 13 (4) ◽  
pp. 281-287 ◽  
Author(s):  
Sampath S.S. ◽  
Nethri Rammohan ◽  
Reema Shetty ◽  
Sawan Shetty ◽  
Chithirai Pon Selvan M.

Purpose Stainless steel is one of the most important elements in structural design and application, and due to its excellent properties, it is widely used in industries for conventional structural engineering applications, such as thermal power plants, nuclear power plants, civil constructions, etc. (Mishra et al., 2014). A traditional tensile testing machine cannot determine the transversal stress–strain curves (Olden, 2002, 2013). Design/methodology/approach In the present study, identical mild steel specimen parts are welded at different intervals and then subjected to tensile loading. Welding is carried along the length of the specimen. Induced stresses are determined at the welded intervals and the stress–strain curve is obtained. Findings By considering the temperature of the weld at the interface, thermal stresses are determined. Brinell hardness number is determined at the interface and the base metal. Also, the change in the hardness at the heat-affected zone (HAZ) is found. Validation is carried out by comparing the results with the original stress–strain curve. Originality/value In the HAZ, there is a drop in the hardness number, which means that there is a change in the material property due to welding. The thermal stresses which develop at the interface can also play a very important role for property change. Results show that the stress developed due to the rise in temperature is lesser than that of normal stresses.


SIMULATION ◽  
2021 ◽  
pp. 003754972110315
Author(s):  
B Girinath ◽  
N Siva Shanmugam

The present study deals with the extended version of our previous research work. In this article, for predicting the entire weld bead geometry and engineering stress–strain curve of the cold metal transfer (CMT) weldment, a MATLAB based application window (second version) is developed with certain modifications. In the first version, for predicting the entire weld bead geometry, apart from weld bead characteristics, x and y coordinates (24 from each) of the extracted points are considered. Finally, in the first version, 53 output values (five for weld bead characteristics and 48 for x and y coordinates) are predicted using both multiple regression analysis (MRA) and adaptive neuro fuzzy inference system (ANFIS) technique to get an idea related to the complete weld bead geometry without performing the actual welding process. The obtained weld bead shapes using both the techniques are compared with the experimentally obtained bead shapes. Based on the results obtained from the first version and the knowledge acquired from literature, the complete shape of weld bead obtained using ANFIS is in good agreement with the experimentally obtained weld bead shape. This motivated us to adopt a hybrid technique known as ANFIS (combined artificial neural network and fuzzy features) alone in this paper for predicting the weld bead shape and engineering stress–strain curve of the welded joint. In the present study, an attempt is made to evaluate the accuracy of the prediction when the number of trials is reduced to half and increasing the number of data points from the macrograph to twice. Complete weld bead geometry and the engineering stress–strain curves were predicted against the input welding parameters (welding current and welding speed), fed by the user in the MATLAB application window. Finally, the entire weld bead geometries were predicted by both the first and the second version are compared and validated with the experimentally obtained weld bead shapes. The similar procedure was followed for predicting the engineering stress–strain curve to compare with experimental outcomes.


2012 ◽  
Vol 27 (2) ◽  
pp. 318-328 ◽  
Author(s):  
Svetlana Borodulina ◽  
Artem Kulachenko ◽  
Mikael Nygårds ◽  
Sylvain Galland

Abstract We have investigated a relation between micromechanical processes and the stress-strain curve of a dry fiber network during tensile loading. By using a detailed particle-level simulation tool we investigate, among other things, the impact of “non-traditional” bonding parameters, such as compliance of bonding regions, work of separation and the actual number of effective bonds. This is probably the first three-dimensional model which is capable of simulating the fracture process of paper accounting for nonlinearities at the fiber level and bond failures. The failure behavior of the network considered in the study could be changed significantly by relatively small changes in bond strength, as compared to the scatter in bonding data found in the literature. We have identified that compliance of the bonding regions has a significant impact on network strength. By comparing networks with weak and strong bonds, we concluded that large local strains are the precursors of bond failures and not the other way around.


Sign in / Sign up

Export Citation Format

Share Document