EM field prediction inside lossy multilayer elliptic cylinders for biological-body modeling and numerical-procedure testing

1999 ◽  
Vol 46 (11) ◽  
pp. 1304-1309 ◽  
Author(s):  
S. Caorsi ◽  
M. Pastorino ◽  
M. Raffetto
Keyword(s):  
Author(s):  
Matt Bristow

A new analytical method is presented to determine the effects of cyclic loading on laterally loaded piles. The method uses a new numerical procedure to quantify the effects of the cyclic loading at each soil depth and convert that to a set of cyclic p-y modifiers. The reduced foundation stiffness associated with the cyclic loading can be determined, including the residual static capacity and an estimate of the accumulated displacement. The new method introduces the concept of cyclic degradation damage, which is defined as sum of the cyclic degradation that is occurring at each soil depth. Cyclic degradation calculations are based on the shear stresses in the soil. Consequently, anything that causes the shear stresses to change (e.g. pile length, pile diameter, applied loading, etc.) will automatically be included in the calculation of cyclic p-y modifiers. The method has been validated by comparing the cyclic p-y curves produced using the new method with established cyclic p-y curves derived from fielding testing. The new method has also been used to investigate what happens to the cyclic p-y modifiers as one moves away from the reference conditions used to determine the established cyclic p-y curves in API RP2A (2000). The new method shows that every application (e.g. combination of cyclic loading, pile properties, and soil characteristics) has its own unique set of cyclic p-y curves, though most p-y curves fit within an upper and lower bound range. Examples are provided for large diameter monopiles.


2012 ◽  
Vol 9 (1) ◽  
pp. 110-115
Author(s):  
L.A. Kovaleva ◽  
R.R. Zinnatullin ◽  
V.N. Blagochinnov ◽  
A.A. Musin ◽  
Yu.I. Fatkhullina ◽  
...  

Some results of experimental and numerical studies of the influence of radio-frequency (RF) and microwave (MW) electromagnetic (EM) fields on water-in-oil emulsions are presented. A detailed investigation of the dependence of the dielectric properties of emulsions on the frequency of the field makes it possible to establish the most effective frequency range of the EM influence. The results of water-in-oil emulsion stability in the RF EM field depending on their dielectric properties are presented. The effect of the MW EM field on the emulsion in a dynamic mode has been studied experimentally. In an attempt to understand the mechanism of emulsion destruction the mathematical model for a single emulsion droplet dynamics in radio-frequency (RF) and microwave (MW) electromagnetic fields is formulated.


Lubricants ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 58 ◽  
Author(s):  
Nicola Menga ◽  
Francesco Bottiglione ◽  
Giuseppe Carbone

In this paper, we study the steady-state rolling contact of a linear viscoelastic layer of finite thickness and a rigid indenter made of a periodic array of equally spaced rigid cylinders. The viscoelastic contact model is derived by means of Green’s function approach, which allows solving the contact problem with the sliding velocity as a control parameter. The contact problem is solved by means of an accurate numerical procedure developed for general two-dimensional contact geometries. The effect of geometrical quantities (layer thickness, cylinders radii, and cylinders spacing), material properties (viscoelastic moduli, relaxation time) and operative conditions (load, velocity) are all investigated. Physical quantities typical of contact problems (contact areas, deformed profiles, etc.) are calculated and discussed. Special emphasis is dedicated to the viscoelastic friction force coefficient and to the energy dissipated per unit time. The discussion is focused on the role played by the deformation localized at the contact spots and the one in the bulk of the thin layer, due to layer bending. The model is proposed as an accurate solution for engineering applications such as belt conveyors, in which the energy dissipated on the rolling contact of idle rollers can, in some cases, be by far the most important contribution to their energy consumption.


2015 ◽  
Vol 4 (3) ◽  
pp. 420 ◽  
Author(s):  
Behrooz Basirat ◽  
Mohammad Amin Shahdadi

<p>The aim of this article is to present an efficient numerical procedure for solving Lane-Emden type equations. We present two practical matrix method for solving Lane-Emden type equations with mixed conditions by Bernstein polynomials operational matrices (BPOMs) on interval [<em>a; b</em>]. This methods transforms Lane-Emden type equations and the given conditions into matrix equation which corresponds to a system of linear algebraic equations. We also give some numerical examples to demonstrate the efficiency and validity of the operational matrices for solving Lane-Emden type equations (LEEs).</p>


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 169
Author(s):  
Avram Sidi

The secant method is a very effective numerical procedure used for solving nonlinear equations of the form f(x)=0. In a recent work (A. Sidi, Generalization of the secant method for nonlinear equations. Appl. Math. E-Notes, 8:115–123, 2008), we presented a generalization of the secant method that uses only one evaluation of f(x) per iteration, and we provided a local convergence theory for it that concerns real roots. For each integer k, this method generates a sequence {xn} of approximations to a real root of f(x), where, for n≥k, xn+1=xn−f(xn)/pn,k′(xn), pn,k(x) being the polynomial of degree k that interpolates f(x) at xn,xn−1,…,xn−k, the order sk of this method satisfying 1<sk<2. Clearly, when k=1, this method reduces to the secant method with s1=(1+5)/2. In addition, s1<s2<s3<⋯, such that limk→∞sk=2. In this note, we study the application of this method to simple complex roots of a function f(z). We show that the local convergence theory developed for real roots can be extended almost as is to complex roots, provided suitable assumptions and justifications are made. We illustrate the theory with two numerical examples.


Sign in / Sign up

Export Citation Format

Share Document