Destruction of water-in-oil emulsions in electromagnetic fields in a dynamic mode

2012 ◽  
Vol 9 (1) ◽  
pp. 110-115
Author(s):  
L.A. Kovaleva ◽  
R.R. Zinnatullin ◽  
V.N. Blagochinnov ◽  
A.A. Musin ◽  
Yu.I. Fatkhullina ◽  
...  

Some results of experimental and numerical studies of the influence of radio-frequency (RF) and microwave (MW) electromagnetic (EM) fields on water-in-oil emulsions are presented. A detailed investigation of the dependence of the dielectric properties of emulsions on the frequency of the field makes it possible to establish the most effective frequency range of the EM influence. The results of water-in-oil emulsion stability in the RF EM field depending on their dielectric properties are presented. The effect of the MW EM field on the emulsion in a dynamic mode has been studied experimentally. In an attempt to understand the mechanism of emulsion destruction the mathematical model for a single emulsion droplet dynamics in radio-frequency (RF) and microwave (MW) electromagnetic fields is formulated.

Author(s):  
Liana Kovaleva ◽  
Ayrat Musin ◽  
Yulia Fatkhullina ◽  
Yuriy Zamula ◽  
Rasul Zinnatullin ◽  
...  

Some results of experimental studies of the water-in-oil emulsions in RF and MW electromagnetic fields are presented. In an attempt to understand the phenomenon a mathematical model for a single emulsion droplet dynamics in radio frequency (RF) and microwave (MW) electromagnetic fields is formulated. An algorithm for numerical solution of the problem is developed. The problem is solved accounting for the thermal motion induced by electromagnetic field in the fluid within the water droplet and in the surrounding liquid. The numerical solution revealed that the structures of arising convective flows induced by RF and MW electromagnetic fields are different. The results can help to understand the physical mechanisms of water-in-oil emulsion destruction in electromagnetic field.


Author(s):  
Liana Kovaleva ◽  
Ayrat Musin ◽  
Rasul Zinnatullin ◽  
Iskander S. Akhatov

The problem of water-in-oil emulsion destruction is related to many technological processes in the oil-and-gas industry, especially in extracting and processing of oil, preparation and transportation of oil, and liquidation/recycling of oil-sludge barns. High stability of water-in-oil emulsions is principally conditioned by the presence in oils of heavy high-molecular polar components that envelope water droplets and prevent coalescence of these droplets. Using conventional techniques to destroy the emulsions yields no positive results. Employing electromagnetic field energy is one of the ways to address this problem. The paper presents the results of an experimental study of the water-in-oil emulsion destruction in radio-frequency and microwave electromagnetic fields. A mathematical model is also proposed to describe the process of electromagnetic impact on water-in-oil emulsions.


2020 ◽  
Vol 56 (78) ◽  
pp. 11585-11588
Author(s):  
Bao Wang ◽  
Awais Mahmood ◽  
Lei Chen ◽  
Ding Weng ◽  
Caihua Wang ◽  
...  

In this study, a surfactant stabilized water-in-oil emulsion has been successfully separated by using only NaCl particles as a filter.


2014 ◽  
Vol 2014 (1) ◽  
pp. 285469 ◽  
Author(s):  
Merv Fingas

Research has shown that asphaltenes are the prime stabilizers of water-in-oil emulsions and that resins are necessary to solvate the asphaltenes. Research has also shown that many compositional factors play a role including the amount of saturates and the properties of viscosity and density. These factors can then be used to develop models of emulsion formation. A review of the formation processes of these emulsions and water and oil types is given. This applies to all four water-in-oil types: stable, meso-stable, unstable emulsions and entrained water. The differences among these four types are high-lighted. A number of other techniques have also been used to model emulsions including neural networks. These are noted and compared to the regression models. A data set of more than 400 oils and their water-in-oil mixtures are used for the comparison. Numerical modeling schemes for the formation of water-in-oil emulsions are reviewed. New models are based on empirical data and the corresponding physical knowledge of emulsion formation. The density, viscosity, asphaltene and resin contents were correlated with a stability index. The establishment of an index for emulsion stability enables the use of this value as a target for the optimization of regressions to form a new model. The predictions of the new model are much simpler and better than old models and some that have been in the literature for some time. The new model is more accurate than the old models, although some improvement could still be made. The benefit of the new model is that it is more accurate and simpler than former regression models. The different approaches to these models and older regression models are highlighted.


2005 ◽  
Vol 2005 (1) ◽  
pp. 647-654
Author(s):  
Merv Fingas ◽  
Ben Fieldhouse

ABSTRACT Water-in-oil mixtures were grouped into four states or classes: stable, mesostable, unstable, and entrained water. Only stable and mesostable states can be characterized as emulsions. These states were established according to lifetime, visual appearance, complex modulus, and differences in viscosity. Water-in-oil emulsions made from crude oils have different classes of stability as a result of the asp haltene and resin contents, as well as differences in the viscosity of the starting oil. In this paper a new numerical modelling scheme is proposed and is based on empirical data and the corresponding physical knowledge of emulsion formation. The density, viscosity, saturate, asphaltene and resin contents are used to compute a class index which yields either an unstable or entrained water-in-oil state or a meso-stable or stable emulsion. A prediction scheme is given to estimate the water content and viscosity of the resulting water-in-oil state and the time to formation with input of wave-height.


REAKTOR ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 29
Author(s):  
B. Pramudono ◽  
H. B. Mat

The stability of water-in-oil emulsion of some Malaysian crude oils was studied with particular emphasis on effect of interfacial active components existed in the crude oil, i.e. asphaltene, resin and wax. The emulsion stability was studied by measuring the volume of water or oil phase separated in variation with time, water hold up, and the heights of the sedimenting/coalescing interfaces during the separation at various temperatures. The study investigated the influence of asphaltene, resin and wax on emultion stability if it`s present in the crude oil alone, together or combination one of the others. The result show that the interfacial active component that stabilize emulsion is asphaltene. The resin and wax  do not form stale emulsion either aloneor together. There is a correlation between emulsion stability and physicochemical properties of crude oil which showed that higher asphaltene content in the crude oil would form more stable emultion. Increased temperature was found to cause instability of emultion. Keywords : emultion stability, crude oil, asphaltene, resin and wax


2015 ◽  
Vol 15 (4) ◽  
pp. 997-1008
Author(s):  
Małgorzata Tabaszewska ◽  
Tadeusz Grega ◽  
Dorota Najgebauer-Lejko ◽  
Grażyna Jaworska

Abstract The effect of 0, 1.5, 5, 10 and 15 (g 100 g-1 of emulsion) WPC 80 additive (80% whey protein concentrate) on the pH, physical, oxidative and microbiological stability of the water-in-oil emulsion was studied during 16-week storage at ~20°C at 4-week intervals. All determined features were significantly affected by the supplementation. The most beneficial as regards storage stability was the emulsion with 5% of WPC 80. This treatment was the most resistant to oxidative changes showing low increase of the concentration of conjugated diene hydroperoxides (from 0.92 to 1.04 mg g-1) and of the thiobarbituric acid reactive substances (from 0.83 to 1.37 mg malondialdehyde g-1) as well as only slight increment (by 0.47 log CFU g-1) of the microorganisms number during storage. Thus, the results of the present study revealed that whey proteins can be applied in the proper amount to produce cosmetic emulsions composed of natural ingredients and with reasonable storage stability.


Author(s):  
А.И. Муллаянов ◽  
Р.Ш. Осипова ◽  
А.А. Мусин ◽  
Л.А. Ковалева

The behavior of a water-in-oil emulsion stabilized with asphaltenes under the action of an inhomogeneous alternating electric field has been studied. The experimental technique is based on the use of microfluidics, optical microscopy, and high-speed video filming. Quantitative estimates of the parameters characterizing the dynamics of the destruction of the emulsion, depending on the frequency and amplitude of the applied field, are obtained. The method will be useful in the development of effective methods for breaking emulsions and modifying existing technologies for separating oil emulsions into phases.


2015 ◽  
Vol 55 (2) ◽  
pp. 416
Author(s):  
Zachary Aman ◽  
William G.T. Syddall ◽  
Paul Pickering ◽  
Michael Johns ◽  
Eric F. May

The severe operating pressures and distances of deepwater tiebacks increase the risk of hydrate blockage during transient operations such as shut-in and restart. In many cases, complete hydrate avoidance through chemical management may be cost prohibitive, particularly late in a field’s life. For a unique subclass of crude oils, however that have not been observed to form a hydrate blockage during restart, active hydrate prevention may be unnecessary. In the past 20 years, limited information has been reported about the chemical or physical mechanisms that enable this particular non-plugging behaviour. This extended abstract demonstrates a systematic method of characterising this oil, including: physical property analysis that includes and builds upon ASTM standards; water-in-oil emulsion behaviour; and, the effect of oil on hydrate blockage formation mechanics. This last set of experiments uses a sapphire autoclave to allow direct observation of hydrate aggregation and deposition, combined with resistance-to-flow measurements. The effect of shut-ins and restarts on the oil’s plugging tendency is also studied in these experiments. The method was tested with several Australian crude oils, some of which exhibited non-plugging behaviour. In general, these particular crude oils do not form stable water-in-oil emulsions but do form stable non-agglomerating hydrate-in-oil dispersions. The oils suppress hydrate formation rates and their resistance-to-flow does not increase significantly when the amount of hydrate present would normally form a plug.


RSC Advances ◽  
2018 ◽  
Vol 8 (49) ◽  
pp. 27754-27762 ◽  
Author(s):  
Xinya Wang ◽  
Changfa Xiao ◽  
Hailiang Liu ◽  
Mingxing Chen ◽  
Junqiang Hao ◽  
...  

PVDF-HFP/PTFE blend membranes were prepared for the first time via TIPS method with DBP and DOP as mixed diluent and PTFE as the blending polymer. The obtained membranes could separate different water-in-oil emulsions effectively.


Sign in / Sign up

Export Citation Format

Share Document