scholarly journals New density-independent calibration function for microwave sensing of moisture content in particulate materials

1998 ◽  
Vol 47 (3) ◽  
pp. 613-622 ◽  
Author(s):  
S. Trabelsi ◽  
A.W. Krazsewski ◽  
S.O. Nelson
2020 ◽  
Vol 36 (5) ◽  
pp. 667-672
Author(s):  
Micah A. Lewis ◽  
Samir Trabelsi

HighlightsReal-time, free-space transmission measurements of relative complex permittivity in unshelled peanuts during dryingDynamic application: temperature, density and moisture content changing during dryingThree density-independent calibration functions evaluated for accuracy in real-time moisture content determinationReal-time moisture content determination with standard error of performance (SEP) = 0.55% moisture content for all calibration functionsCalibration function most commonly used with microwave moisture sensor was determined to be most accurate; SEP = 0.448% moisture contentAbstract. A microwave moisture sensor, developed within USDA ARS, has been used to determine moisture content in unshelled peanuts during drying. Relative complex permittivities of the peanuts obtained from free-space transmission measurements at 5.8 GHz are used for the moisture determination. Due to variations in density caused by drying, it is advantageous to estimate moisture content independent of bulk density. Therefore, moisture content was estimated with three density-independent calibration functions to assess which one provided optimal accuracy. One of the functions is based on the measured attenuation and phase shift, and the other two are permittivity based (one of which is commonly used with the microwave moisture sensor). The sensor was calibrated for peanut pod moisture content determination over a temperature range of 10°C to 40°C and a moisture content range of 6.5% to 19% wet basis (w.b.). Statistical analysis showed high coefficients of determination (r2), = 0.97 for the calibration with each function. Peanut pod moisture content was determined with the sensor in real-time as peanuts dried, and estimated moisture content was compared to the reference oven drying method. While the standard error of performance (SEP) for the three functions was = 0.55% moisture content, the calibration function most commonly used with the microwave sensor was observed to be the most accurate (SEP = 0.448% moisture content). Microwave sensing is a viable solution for nondestructive, real-time determination of moisture content in peanuts in dynamic situations such as drying. Keywords: Complex permittivity, Dielectric properties, Free-space measurements, Microwave sensing, Moisture content, Peanut drying.


Silva Fennica ◽  
2018 ◽  
Vol 52 (5) ◽  
Author(s):  
Lars Fridh ◽  
Lars Eliasson ◽  
Dan Bergström

According to the Swedish Timber Measurement Act, measurements affecting payments for wood fuels to landowners must be accurate and precise. In this regard, moisture content is an important quality parameter for wood chips which influences the net calorific value as received and thus the economic value. As standard practice moisture content is determined with the oven-drying method, which is cumbersome to use for deliveries to facilities without drying-ovens, which in turn necessitates that samples are taken elsewhere for measurement. An alternative solution is to use a portable moisture meter. Our aim was to evaluate the precision of a handheld capacitance moisture meter. Accuracy and precision of a capacitance meter was determined in the lab and a calibration function was made. Thereafter, the calibrated moisture meter was compared with the standard method for moisture content determination of truckloads of chips. The capacitance meter showed a moderate accuracy by underestimating moisture content by 6.0 percentage points (pp), compared to the reference method, at a precision of ±3.8 pp (CI 95%). For chips with M > 50%, both accuracy and precision decreased. Calibration increased the accuracy in the follow up study by 3 pp for chips with M < 50% but could not be made for wetter chips. The oven-drying method and the capacitance meter can provide equally accurate estimates of mean moisture content for chips with M < 50% if a larger sample is taken with the latter. It should be possible to use capacitance meters to measure moisture content even when used to calculate payments depending of the needed accuracy. A calibration function for each assortment is needed.


1968 ◽  
Vol 19 (03/04) ◽  
pp. 423-429 ◽  
Author(s):  
G. M Thelin ◽  

SummaryA stable, lyophilized AHF reference plasma has been prepared from pooled plasma from at least 50 normal healthy donors and standardized against a primary standard of fresh plasma from 20 healthy male donors aged 20 to 40. Average AHF potency of a typical lot is 98.8%, and moisture content is less than 0.5%. Under storage at -25° C, this AHF reference plasma is stable for at least 18 months. It has been used in several major coagulation laboratories, and has given consistently satisfactory and reproducible results in AHF assays.


Metrologiya ◽  
2020 ◽  
pp. 16-24
Author(s):  
Alexandr D. Chikmarev

A single program has been developed to ensure that the final result of the data processing of the measurement calibration protocol is obtained under normal conditions. The calibration result contains a calibration function or a correction function in the form of a continuous sedate series and a calibration chart based on typical additive error probabilities. Solved the problem of the statistical treatment of the calibration protocol measuring in normal conditions within a single program “MMI–calibration 3.0” that includes identification of the calibration function in a continuous power series of indications of a measuring instrument and chart calibration. An example of solving the problem of calibration of the thermometer by the working standard of the 3rd grade with the help of the “MMI-calibration 3.0” program.


2018 ◽  
Vol 2 (1) ◽  
pp. 13
Author(s):  
Walter Manuel Vicharra ◽  
Carlos Cabrera

The main objective of esta research is to determine the level of concentration of particulate materials of the size of 10 microns and 2.5 microns of an artisanal foundry, and to Evaluate the health in workers' respiratory diseases, as well as to find a relationship Between the particulate materials and the respiratory diseases, Which the project is located in the district of San Antonio, Department of Huarochiri, Department of Lima, Peru - 2017. The gravimetric analysis method approved by the General Directorate of Environmental Health DIGESA was used, with the Protocol for air quality monitoring and data management, to determine the level of concentration of particulate material and on the other hand Health Assessments in respiratory diseases Were used a survey made by a doctor in pulmonology, Which was Then backed by medical examinations performed on workers. It was Determined That the particulate materials of 10 microns and 2.5 microns Were above environmental quality standards, Which is Considered as risky for the health of people, and in respiratory diseases it was Concluded That some of the subjects of the population of study are With occupational diseases.


Sign in / Sign up

Export Citation Format

Share Document