High-energy radiation visualizer (HERV): a new system for imaging in X-ray and gamma-ray emission regions

1996 ◽  
Vol 43 (4) ◽  
pp. 2427-2433 ◽  
Author(s):  
A.N. Sudarkin ◽  
O.P. Ivanov ◽  
V.E. Stepanov ◽  
A.G. Volkovich ◽  
A.S. Turin ◽  
...  
Author(s):  
A.N. Sudarkin ◽  
O.P. Ivanov ◽  
V.E. Stepanov ◽  
A.G. Volkovich ◽  
A.S. Turin ◽  
...  

2003 ◽  
Vol 214 ◽  
pp. 177-180
Author(s):  
B. Rudak ◽  
J. Dyks

Lightcurves and broadband energy spectra of the brightest X/γ-ray sources among the rotation powered pulsars exhibit unexpected richness of features, making each object almost a unique case. This contribution presents how our models of high-energy radiation within the framework of SCLF (space charge limited flow) polar-cap scenarios tackle with some of these challenges.


Author(s):  
P. T. O'Brien ◽  
P. Evans

The dawn of the gravitational-wave (GW) era has sparked a greatly renewed interest into possible links between sources of high-energy radiation and GWs. The most luminous high-energy sources—gamma-ray bursts (GRBs)—have long been considered as very likely sources of GWs, particularly from short-duration GRBs, which are thought to originate from the merger of two compact objects such as binary neutron stars and a neutron star–black hole binary. In this paper, we discuss: (i) the high-energy emission from short-duration GRBs; (ii) what other sources of high-energy radiation may be observed from binary mergers; and (iii) how searches for high-energy electromagnetic counterparts to GW events are performed with current space facilities. While current high-energy facilities, such as Swift and Fermi, play a crucial role in the search for electromagnetic counterparts, new space missions will greatly enhance our capabilities for joint observations. We discuss why such facilities, which incorporate new technology that enables very wide-field X-ray imaging, are required if we are to truly exploit the multi-messenger era. This article is part of a discussion meeting issue ‘The promises of gravitational-wave astronomy’.


1996 ◽  
Vol 160 ◽  
pp. 315-322 ◽  
Author(s):  
Alice K. Harding

AbstractWith the increased sensitivity of gamma-ray detectors on the Compton Gamma-Ray Observatory (CGRO) the number of presently known gamma-ray pulsars has grown. The new detections are beginning to provide clues to the origin of the high-energy radiation in the form of emerging patterns and correlations among observed quantities such as gamma-ray efficiency and spectral index vs. age. But there are still many questions about the location of the emission and its relation to the radio, optical and X-ray pulses. This paper will review models for gamma-ray emission from pulsars and will examine how well the detailed predictions of these models account for the existing observations.


2020 ◽  
Author(s):  
Michele Urbani ◽  
Joan Montanyà ◽  
Oscar Van der Velde ◽  
Jesús Alberto López

<p>In the last two decades, it has been discovered that lightning strikes can emit high-energy radiation.<br>In particular, a phenomenon has been observed from space called "Terrestrial Gamma-ray Flash'' (TGF), which consists of an intense burst of gamma radiation that can be produced during thunderstorms. This phenomenon has met with considerable interest in the scientific community and its mechanism is still not fully understood. Nowadays several satellites for astrophysics like AGILE and FERMI are able to detect and map TGFs and specific instruments like the ASIM detector on the ISS are studying this phenomenon from space.<br>In the atmosphere, the high-energy radiation undergoes a strong absorption exponentially proportional to the air density which makes it more difficult to detect TGFs on the ground. Nonetheless, ground measurements were conducted and observed that even in cloud-to-ground lightning high-energy radiation were produced. In particular, the works of Moore et al. [2001] and Dwyer et al. [2005] highlight two lightning processes in which the X-ray emission could be produced: downward negative stepped leader and dart leader. Currently, it is not clear if the emissions revealed on the ground and the TGFs observed in space are essentially the same phenomenon or how these phenomena are related. For these reasons, it is particularly interesting to study high-energy emissions also from ground instruments because, despite the strong absorption of the high-energy radiation, ground observations can reach a better accuracy in time and space and provide crucial information to investigate the origin and conditions under which these emissions occur.<br>A privileged instrument for this research is the VHF Lightning Interferometer, a system of antennas that allows you to map lightning through the very high frequency (VHF) emission. Due to the high resolution of this instrument, should be possible to locate the origin of the high-energy emissions and hopefully provide a better understanding of the radiation mechanism.<br>The aim of this research is, therefore, to develop a 3D interferometry system to identify as accurately as possible the origin and the conditions in which the X-ray emission occurs in cloud-to-ground lightning and investigate the relation of the VHF emissions with the TGFs.<br>Recently an observation campaign was conducted in Colombia with two VHF Lightning Interferometers and two X-rays detectors. This interferometry system was installed in the coverage area of a Lightning Mapping Array (LMA) and LINET to take advantage of the complementary information that these lightning location networks could provide. At the moment, about 15 lightning events with X-ray emissions were observed, including five X-ray bursts from downward negative leaders and two emissions from dart leaders. Further studies and analysis of the collected data are still ongoing.</p>


1994 ◽  
Vol 426 ◽  
pp. L1 ◽  
Author(s):  
D. E. Alexandreas ◽  
G. E. Allen ◽  
D. Berley ◽  
S. Biller ◽  
R. L. Burman ◽  
...  

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 503
Author(s):  
Lara Nava

Emission from Gamma-ray bursts is thought to be powered mainly by synchrotron radiation from energetic electrons. The same electrons might scatter these synchrotron seed photons to higher (>10 GeV) energies, building a distinct spectral component (synchrotron self-Compton, SSC). This process is expected to take place, but its relevance (e.g., the ratio between the SSC and synchrotron emitted power) is difficult to predict on the basis of current knowledge of physical conditions at GRB emission sites. Very high-energy radiation in GRBs can be produced also by other mechanisms, such as synchrotron itself (if PeV electrons are produced at the source), inverse Compton on external seed photons, and hadronic processes. Recently, after years of efforts, very high-energy radiation has been finally detected from at least four confirmed long GRBs by the Cherenkov telescopes H.E.S.S. and MAGIC. In all four cases, the emission has been recorded during the afterglow phase, well after the end of the prompt emission. In this work, I give an overview, accessible also to non-experts of the field, of the recent detections, theoretical implications, and future challenges, with a special focus on why very high-energy observations are relevant for our understanding of Gamma-ray bursts and which long-standing questions can be finally answered with the help of these observations.


Sign in / Sign up

Export Citation Format

Share Document