Efficient maximum likelihood classification for imaging spectrometer data sets

1994 ◽  
Vol 32 (2) ◽  
pp. 274-281 ◽  
Author(s):  
Xiuping Jia ◽  
J.A. Richards
2021 ◽  
Vol 13 (13) ◽  
pp. 2559
Author(s):  
Daniele Cerra ◽  
Miguel Pato ◽  
Kevin Alonso ◽  
Claas Köhler ◽  
Mathias Schneider ◽  
...  

Spectral unmixing represents both an application per se and a pre-processing step for several applications involving data acquired by imaging spectrometers. However, there is still a lack of publicly available reference data sets suitable for the validation and comparison of different spectral unmixing methods. In this paper, we introduce the DLR HyperSpectral Unmixing (DLR HySU) benchmark dataset, acquired over German Aerospace Center (DLR) premises in Oberpfaffenhofen. The dataset includes airborne hyperspectral and RGB imagery of targets of different materials and sizes, complemented by simultaneous ground-based reflectance measurements. The DLR HySU benchmark allows a separate assessment of all spectral unmixing main steps: dimensionality estimation, endmember extraction (with and without pure pixel assumption), and abundance estimation. Results obtained with traditional algorithms for each of these steps are reported. To the best of our knowledge, this is the first time that real imaging spectrometer data with accurately measured targets are made available for hyperspectral unmixing experiments. The DLR HySU benchmark dataset is openly available online and the community is welcome to use it for spectral unmixing and other applications.


Author(s):  
Daniele Cerra ◽  
Miguel Pato ◽  
Kevin Alonso ◽  
Claas Köhler ◽  
Mathias Schneider ◽  
...  

Spectral unmixing represents both an application per se and a pre-processing step for several applications involving data acquired by imaging spectrometers. However, there is still a lack of publicly available reference data sets suitable for the validation and comparison of different spectral unmixing methods. In this paper we introduce the DLR HyperSpectral Unmixing (DLR HySU) benchmark dataset, acquired over German Aerospace Center (DLR) premises in Oberpfaffenhofen. The dataset includes airborne hyperspectral and RGB imagery of targets of different materials and sizes, complemented by simultaneous ground-based reflectance measurements. The DLR HySU benchmark allows a separate assessment of all spectral unmixing main steps: dimensionality estimation, endmember extraction (with and without pure pixe assumption), and abundance estimation. Results obtained with traditional algorithms for each of these steps are reported. To the best of our knowledge, this is the first time that real imaging spectrometer data with accurately measured targets are made available for hyperspectral unmixing experiments. The DLR HySU benchmark dataset is openly available online and the community is welcome to use it for spectral unmixing and other applications.


2021 ◽  
Author(s):  
Jakob Raymaekers ◽  
Peter J. Rousseeuw

AbstractMany real data sets contain numerical features (variables) whose distribution is far from normal (Gaussian). Instead, their distribution is often skewed. In order to handle such data it is customary to preprocess the variables to make them more normal. The Box–Cox and Yeo–Johnson transformations are well-known tools for this. However, the standard maximum likelihood estimator of their transformation parameter is highly sensitive to outliers, and will often try to move outliers inward at the expense of the normality of the central part of the data. We propose a modification of these transformations as well as an estimator of the transformation parameter that is robust to outliers, so the transformed data can be approximately normal in the center and a few outliers may deviate from it. It compares favorably to existing techniques in an extensive simulation study and on real data.


Author(s):  
Duha Hamed ◽  
Ahmad Alzaghal

AbstractA new generalized class of Lindley distribution is introduced in this paper. This new class is called the T-Lindley{Y} class of distributions, and it is generated by using the quantile functions of uniform, exponential, Weibull, log-logistic, logistic and Cauchy distributions. The statistical properties including the modes, moments and Shannon’s entropy are discussed. Three new generalized Lindley distributions are investigated in more details. For estimating the unknown parameters, the maximum likelihood estimation has been used and a simulation study was carried out. Lastly, the usefulness of this new proposed class in fitting lifetime data is illustrated using four different data sets. In the application section, the strength of members of the T-Lindley{Y} class in modeling both unimodal as well as bimodal data sets is presented. A member of the T-Lindley{Y} class of distributions outperformed other known distributions in modeling unimodal and bimodal lifetime data sets.


Sign in / Sign up

Export Citation Format

Share Document