Dense 3D Reconstruction method using Coplanarities and Metric Constraints for Line Laser Scanning

Author(s):  
Hiroshi Kawasaki ◽  
Ryo Furukawa
Author(s):  
Huanbing Gao ◽  
Lei Liu ◽  
Ya Tian ◽  
Shouyin Lu

This paper presented 3D reconstruction method for road scene with the help of obstacle detection. 3D reconstruction for road scene can be used in autonomous driving, driver assistance system, car navigation systems. However, some errors often rose when 3D reconstructing due to the shade from the moving object in the road scene. The presented 3D reconstruction method with obstacle detection feedback can avoid this problem. Firstly, this paper offers a framework for the 3D reconstruction of road scene by laser scanning and vision. A calibration method based on the location of horizon is proposed, and a method of attitude angle measuring based on vanishing point is proposed to revise the 3D reconstruction result. Secondly, the reconstruction framework is extended by integrating with an object recognition that can automatically detect and discriminate obstacles in the input video streams by a RANSAC approach and threshold filter, and localizes them in the 3D model. 3D reconstruction and obstacle detection are tightly integrated and benefit from each other. The experiment result verified the feasibility and practicability of the proposed method.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yunting Gu ◽  
Jinguang Lv ◽  
Jian Bo ◽  
Baixuan Zhao ◽  
Yupeng Chen ◽  
...  

2013 ◽  
Vol 321-324 ◽  
pp. 862-867
Author(s):  
Fei Tao ◽  
Ping An Mu ◽  
Shu Guang Dai ◽  
Jia Xing Shen

This paper put forward a 3D reconstruction method of the headlight contours based on laser scanning technology and robotics. Firstly, according to the present three-dimensional measurement techniques, the article put forward a set of headlight contour detection method based on the analytic geometry model and the line laser source scanning principle. It establishes a 3D scanning model and coordinate transformation model for 3D reconstruction of the headlight contour. Secondly, according to the demanding accuracy it structures the 3D reconstruction system. Finally it realizes the 3D reconstruction of the headlight contour based on the method, and the result is tested and evaluated matching effect, the result shows that can effectively realize the 3D reconstruction of headlight contour and the method has a good stability.


2015 ◽  
Vol 75 (2) ◽  
Author(s):  
Ho Wei Yong ◽  
Abdullah Bade ◽  
Rajesh Kumar Muniandy

Over the past thirty years, a number of researchers have investigated on 3D organ reconstruction from medical images and there are a few 3D reconstruction software available on the market. However, not many researcheshave focused on3D reconstruction of breast cancer’s tumours. Due to the method complexity, most 3D breast cancer’s tumours reconstruction were done based on MRI slices dataeven though mammogram is the current clinical practice for breast cancer screening. Therefore, this research will investigate the process of creating a method that will be able to reconstruct 3D breast cancer’s tumours from mammograms effectively.  Several steps were proposed for this research which includes data acquisition, volume reconstruction, andvolume rendering. The expected output from this research is the 3D breast cancer’s tumours model that is generated from correctly registered mammograms. The main purpose of this research is to come up with a 3D reconstruction method that can produce good breast cancer model from mammograms while using minimal computational cost.


Sign in / Sign up

Export Citation Format

Share Document