scholarly journals High Fidelity 3D Reconstructions with Limited Physical Views

Author(s):  
Mosam Dabhi ◽  
Chaoyang Wang ◽  
Kunal Saluja ◽  
Laszlo A. Jeni ◽  
Ian Fasel ◽  
...  
Author(s):  
Lee D. Peachey ◽  
Lou Fodor ◽  
John C. Haselgrove ◽  
Stanley M. Dunn ◽  
Junqing Huang

Stereo pairs of electron microscope images provide valuable visual impressions of the three-dimensional nature of specimens, including biological objects. Beyond this one seeks quantitatively accurate models and measurements of the three dimensional positions and sizes of structures in the specimen. In our laboratory, we have sought to combine high resolution video cameras with high performance computer graphics systems to improve both the ease of building 3D reconstructions and the accuracy of 3D measurements, by using multiple tilt images of the same specimen tilted over a wider range of angles than can be viewed stereoscopically. Ultimately we also wish to automate the reconstruction and measurement process, and have initiated work in that direction.Figure 1 is a stereo pair of 400 kV images from a 1 micrometer thick transverse section of frog skeletal muscle stained with the Golgi stain. This stain selectively increases the density of the transverse tubular network in these muscle cells, and it is this network that we reconstruct in this example.


Author(s):  
Jeffry A. Reidler ◽  
John P. Robinson

We have prepared two-dimensional (2D) crystals of tetanus toxin using procedures developed by Uzgiris and Kornberg for the directed production of 2D crystals of monoclonal antibodies at an antigen-phospholipid monolayer interface. The tetanus toxin crystals were formed using a small mole fraction of the natural receptor, GT1, incorporated into phosphatidyl choline monolayers. The crystals formed at low concentration overnight. Two dimensional crystals of this type are particularly useful for structure determination using electron microscopy and computer image refinement. Three dimensional (3D) structural information can be derived from these crystals by computer reconstruction of photographs of toxin crystals taken at different tilt angles. Such 3D reconstructions may help elucidate the mechanism of entry of the enzymatic subunit of toxins into cells, particularly since these crystals form directly on a membrane interface at similar concentrations of ganglioside GT1 to the natural cellular receptors.


Author(s):  
Peter D. Moisiuk ◽  
Daniel R. Beniac ◽  
Ross A. Ridsdale ◽  
Martin Young ◽  
Bhushan Nagar ◽  
...  

Venom from the rattlesnake Crotalus atrox contains a mixture of enzymes that induce a localized effect leading to hemorrhaging, necrosis and edema. As a member of the crotalid family of snake venoms, Crotalus atrox venom contains a C-type lectin that will agglutinate blood cells in a Ca2+-dependent fashion. The lectin is a hydrophilic protein, consisting of two covalently linked, 135 amino acid residues, identical subunits that are rich in aspartic acid, glutamic acid and lysine. Sequence homology with known carbohydrate recognition domains (CRDs) indicates that rattlesnake venom lectin (RSLV) contains a CRD motif that is not linked to accessory domains. Preliminary X-ray diffraction and sedimentation analysis has indicated that lectin from Crotalus atrox forms decamers composed of two five-fold symmetric pentamers. Single particles of RSVL imaged at – 171°C displayed two distinct orientations on the specimen support (Figure a) following incubation in a crystallization Teflon well, coated with a lipid monolayer consisting of phosphatidylcholine and monosialoganglioside. When lying in an end-on orientation, the lectin exhibited a “pentagonal ring” with an outer diameter of 6.7 nm and an inner hollow core of 1.7 nm. A side orientation was also seen, whereby a thickness of 5.8 nm was measured for the lectin. Image processing of 2280 single particles placed in 100 classes (Figure b) led to 3D reconstructions of RSVL (Figure c). Density limited 3D reconstructions showed the lectin to be made of two five-fold symmetrical rings covalently linked between the five subunits that constitute each ring of this homodimer. These results are consistent with sedimentation and preliminary X-ray diffraction analysis on the shape of RSVL and provide the framework for structural verification by 2D electron crystallography.


2018 ◽  
Vol 17 (3) ◽  
pp. 155-160 ◽  
Author(s):  
Daniel Dürr ◽  
Ute-Christine Klehe

Abstract. Faking has been a concern in selection research for many years. Many studies have examined faking in questionnaires while far less is known about faking in selection exercises with higher fidelity. This study applies the theory of planned behavior (TPB; Ajzen, 1991 ) to low- (interviews) and high-fidelity (role play, group discussion) exercises, testing whether the TPB predicts reported faking behavior. Data from a mock selection procedure suggests that candidates do report to fake in low- and high-fidelity exercises. Additionally, the TPB showed good predictive validity for faking in a low-fidelity exercise, yet not for faking in high-fidelity exercises.


2019 ◽  
Vol 12 (1) ◽  
pp. 18-33 ◽  
Author(s):  
Horea Pauna ◽  
Pierre-Majorique Léger ◽  
Sylvain Sénécal ◽  
Marc Fredette ◽  
Élise Labonté-Lemoyne ◽  
...  

1998 ◽  
Author(s):  
R. Hampton ◽  
Nagendra Subba Rao ◽  
Young Kim ◽  
William Wagar ◽  
Allen Karchmer

Sign in / Sign up

Export Citation Format

Share Document