Spatial covariance and adaptive beam forming of high-frequency acoustic signals forward scattered from the sea surface

1991 ◽  
Vol 16 (4) ◽  
pp. 415-419 ◽  
Author(s):  
S.T. McDaniel
Author(s):  
V.A. Bulanov ◽  
I.V. Korskov ◽  
A.V. Storozhenko ◽  
S.N. Sosedko

Описано применение акустического зондирования для исследования акустических характеристик верхнего слоя моря с использованием широкополосных остронаправленных инвертированных излучателей,устанавливаемых на дно. В основу метода положен принцип регистрации обратного рассеяния и отраженияот поверхности моря акустических импульсов с различной частотой, позволяющий одновременно измерятьрассеяние и поглощение звука и нелинейный акустический параметр морской воды. Многочастотное зондирование позволяет реализовать акустическую спектроскопию пузырьков в приповерхностных слоях моря,проводить оценку газосодержания и получать данные о спектре поверхностного волнения при различных состояниях моря вплоть до штормовых. Применение остронаправленных высокочастотных пучков ультразвукапозволяет разделить информацию о планктоне и пузырьках и определить с высоким пространственным разрешением структуру пузырьковых облаков, образующихся при обрушении ветровых волн, и структуру планктонных сообществ. Участие планктона в волновом движении в толще морской воды позволяет определитьпараметры внутренних волн спектр и распределение по амплитудам в различное время.This paper represents the application of acoustic probingfor the investigation of acoustical properties of the upperlayer of the sea using broadband narrow-beam invertedtransducers that are mounted on the sea bottom. Thismethod is based on the principle of the recording of thebackscattering and reflections of acoustic pulses of differentfrequencies from the sea surface. That simultaneouslyallows measuring scattering and absorption of the soundand non-linear acoustic parameter of seawater. Multifrequencyprobing allows performing acoustic spectroscopy ofbubbles in the near-surface layer of the sea, estimating gascontent, and obtaining data on the spectrum of the surfacewaves in various states of the sea up to a storm. Utilizationof the high-frequency narrow ultrasound beams allows us toseparate the information about plankton and bubbles and todetermine the structure of bubble clouds, created during thebreaking of wind waves, along with the structure of planktoncommunities with high spatial resolution. The participationof plankton in the wave motion in the seawater columnallows determining parameters of internal waves, such asspectrum and distribution of amplitudes at different times.


2021 ◽  
Vol 7 (20) ◽  
pp. eabf1552
Author(s):  
Olivia M. Cheriton ◽  
Curt D. Storlazzi ◽  
Kurt J. Rosenberger ◽  
Clark E. Sherman ◽  
Wilford E. Schmidt

Hurricanes are extreme storms that affect coastal communities, but the linkages between hurricane forcing and ocean dynamics remain poorly understood. Here, we present full water column observations at unprecedented resolution from the southwest Puerto Rico insular shelf and slope during Hurricane María, representing a rare set of high-frequency, subsurface, oceanographic observations collected along an island margin during a hurricane. The shelf geometry and orientation relative to the storm acted to stabilize and strengthen stratification. This maintained elevated sea-surface temperatures (SSTs) throughout the storm and led to an estimated 65% greater potential hurricane intensity contribution at this site before eye passage. Coastal cooling did not occur until 11 hours after the eye passage. Our findings present a new framework for how hurricane interaction with insular island margins may generate baroclinic processes that maintain elevated SSTs, thus potentially providing increased energy for the storm.


2013 ◽  
Vol 54 (62) ◽  
pp. 59-64 ◽  
Author(s):  
K. Shirasawa ◽  
N. Ebuchi ◽  
M. Leppäranta ◽  
T. Takatsuka

AbstractA C-band sea-ice radar (SIR) network system was operated to monitor the sea-ice conditions off the Okhotsk Sea coast of northern Hokkaido, Japan, from 1969 to 2004. The system was based on three radar stations, which were capable of continuously monitoring the sea surface as far as 60 km offshore along a 250 km long coastal section. In 2004 the SIR system was closed down and a sea surface monitoring programme was commenced using high-frequency (HF) radar; this system provides information on surface currents in open-water conditions, while areas with ‘no signal’ can be identified as sea ice. The present study compares HF radar data with SIR data to evaluate their feasibility for sea-ice remote sensing. The period of overlapping data was 1.5 months. The results show that HF radar information can be utilized for ice-edge mapping although it cannot fully compensate for the loss of the SIR system. In particular, HF radar does not provide ice concentration, ice roughness and geometrical structures or ice kinematics. The probability of ice-edge detection by HF radar was 0.9 and the correlation of the ice-edge distance between the radars was 0.7.


2020 ◽  
Vol 12 (18) ◽  
pp. 3090
Author(s):  
Qian Shi ◽  
Guihua Wang

Based on high resolution satellite observations of sea surface temperature (SST), warm filaments near the Kuroshio around the Luzon Strait were systematically identified. These filaments extend an average length of about 200 km from the Kuroshio. The occurrence and features of the warm filaments are highly associated with both mesoscale eddies and the intensity of the SST gradient of the Kuroshio. Warm filaments are formed by heat advection from the warm Kuroshio into the colder interior Pacific Ocean by anticyclonic eddies (∼58%), cyclonic eddies (∼10%), and the dipole eddies (∼16%). The large temperature gradient near the Batanes Islands may also contribute to the high frequency of warm filaments in their vicinity. This study will help elucidate the role of zonal heat transport associated with the Kuroshio–eddy interaction during filament formation.


2010 ◽  
Vol 40-41 ◽  
pp. 91-95 ◽  
Author(s):  
Yan Li Zhang

A method to analyze the acoustic signals collected in fully-mechanized caving face is presented in this paper. Through analyzing the marginal spectrum and frequency spectrum of intrinsic mode functions obtained by empirical mode decomposition, acoustic signals’ frequency and amplitude characteristics are gotten, that is, high frequency signals about 1000Hz ~2800Hz are produced when the top coal is combined with gangue. Furthermore, the acoustic signals’ instantaneous energy spectrums in the frequency range of 1000Hz ~2800Hz can be used to identify the coal-rock interface.


Sign in / Sign up

Export Citation Format

Share Document