scholarly journals Rapid observations of ocean dynamics and stratification along a steep island coast during Hurricane María

2021 ◽  
Vol 7 (20) ◽  
pp. eabf1552
Author(s):  
Olivia M. Cheriton ◽  
Curt D. Storlazzi ◽  
Kurt J. Rosenberger ◽  
Clark E. Sherman ◽  
Wilford E. Schmidt

Hurricanes are extreme storms that affect coastal communities, but the linkages between hurricane forcing and ocean dynamics remain poorly understood. Here, we present full water column observations at unprecedented resolution from the southwest Puerto Rico insular shelf and slope during Hurricane María, representing a rare set of high-frequency, subsurface, oceanographic observations collected along an island margin during a hurricane. The shelf geometry and orientation relative to the storm acted to stabilize and strengthen stratification. This maintained elevated sea-surface temperatures (SSTs) throughout the storm and led to an estimated 65% greater potential hurricane intensity contribution at this site before eye passage. Coastal cooling did not occur until 11 hours after the eye passage. Our findings present a new framework for how hurricane interaction with insular island margins may generate baroclinic processes that maintain elevated SSTs, thus potentially providing increased energy for the storm.

2020 ◽  
Author(s):  
Rosemary Morrow ◽  
Lee-Lueng Fu

<p>The future international Surface Water and Ocean Topography (SWOT) Mission, planned for launch in late 2021, will make high-resolution 2D observations of sea-surface height using SAR radar interferometric techniques. SWOT will map the global and coastal oceans up to 77.6° latitude every 21 days over a swath of 120 km (20 km nadir gap). Today’s 2D mapped altimeter data can resolve ocean scales of 150 km wavelength whereas the SWOT measurement will extend our 2D observations down to 15-30 km, depending on sea state. SWOT will offer new opportunities to observe the oceanic dynamic processes at these smaller scales, that are important in the generation and dissipation of ocean kinetic energy, and are one of the main gateways connecting the surface to the ocean interior. Active vertical exchanges linked to these scales have impacts on the local and global budgets of heat and carbon, and on nutrients for biogeochemical cycles.</p><p>SWOT’s unprecedented 2D ocean SSH observations include “balanced” geostrophic eddy motions and high-frequency internal tides and internal waves. SWOT will provide global observations of the 2D structure of these phenomena, enabling us to learn more about their interactions, and helping us to interpret what is currently observed in 1D with conventional altimetry. Yet this mix of balanced and unbalanced motions is a challenge for calculating geostrophic currents directly from SSH or for reconstructing the 4D upper ocean circulation. At these small scales, the ocean dynamics evolve rapidly, and even with SWOT’s 2D SSH images, one satellite cannot observe the temporal evolution of these processes. SWOT data will need to be combined with other satellite and in-situ data and models to better understand the upper ocean 4D circulation (x,y,z,t) over the next decade. SWOT’s new technology will be a forerunner for the future altimetric observing system.</p><p>We will present recent progress in understanding the ocean dynamics contributing to fine-scale sea-surface height, including high-frequency processes such as internal tides, from 1D alongtrack altimetry, SAR data, in-situ data and models. We will also discuss the specific problems of validating the SWOT 2D small, rapid dynamics with in-situ data and other satellite data. </p>


Author(s):  
V.A. Bulanov ◽  
I.V. Korskov ◽  
A.V. Storozhenko ◽  
S.N. Sosedko

Описано применение акустического зондирования для исследования акустических характеристик верхнего слоя моря с использованием широкополосных остронаправленных инвертированных излучателей,устанавливаемых на дно. В основу метода положен принцип регистрации обратного рассеяния и отраженияот поверхности моря акустических импульсов с различной частотой, позволяющий одновременно измерятьрассеяние и поглощение звука и нелинейный акустический параметр морской воды. Многочастотное зондирование позволяет реализовать акустическую спектроскопию пузырьков в приповерхностных слоях моря,проводить оценку газосодержания и получать данные о спектре поверхностного волнения при различных состояниях моря вплоть до штормовых. Применение остронаправленных высокочастотных пучков ультразвукапозволяет разделить информацию о планктоне и пузырьках и определить с высоким пространственным разрешением структуру пузырьковых облаков, образующихся при обрушении ветровых волн, и структуру планктонных сообществ. Участие планктона в волновом движении в толще морской воды позволяет определитьпараметры внутренних волн спектр и распределение по амплитудам в различное время.This paper represents the application of acoustic probingfor the investigation of acoustical properties of the upperlayer of the sea using broadband narrow-beam invertedtransducers that are mounted on the sea bottom. Thismethod is based on the principle of the recording of thebackscattering and reflections of acoustic pulses of differentfrequencies from the sea surface. That simultaneouslyallows measuring scattering and absorption of the soundand non-linear acoustic parameter of seawater. Multifrequencyprobing allows performing acoustic spectroscopy ofbubbles in the near-surface layer of the sea, estimating gascontent, and obtaining data on the spectrum of the surfacewaves in various states of the sea up to a storm. Utilizationof the high-frequency narrow ultrasound beams allows us toseparate the information about plankton and bubbles and todetermine the structure of bubble clouds, created during thebreaking of wind waves, along with the structure of planktoncommunities with high spatial resolution. The participationof plankton in the wave motion in the seawater columnallows determining parameters of internal waves, such asspectrum and distribution of amplitudes at different times.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 449
Author(s):  
Yashira Marie Sánchez Colón ◽  
Fred Charles Schaffner

Laguna Cartagena is a coastal, eutrophic, shallow lake and freshwater wetland in southwestern Puerto Rico, managed by the US Fish and Wildlife Service. This ecosystem has been impacted by phosphorus loading from adjacent agricultural areas since the 1950s, causing eutrophication and deteriorating wildlife habitats. Herein, we describe phosphorus input and export during September 2010–September 2011 (Phase One) and October 2013–November 2014 (Phase Two). These two phases bracket a period of intensified management interventions including excavation and removal of sediment and vegetation, draining, and burning during the summers of 2012 and 2013. Results indicate that Laguna Cartagena retains a phosphorus (sink) in its sediments, and exhibits nutrient-releasing events (source, mainly total phosphorus) to the lagoon water column, which are associated with rainfall and rising water levels. External factors including water level fluctuations and rainfall influenced phosphorus export during Phase One, but after management interventions (Phase Two), internal processes influenced sink/source dynamics, releasing elevated phosphorus concentrations to the water column. When exposed sediments were re-flooded, phosphorus concentrations to the water column increased, releasing elevated P concentrations downstream to an estuarine wetlands area and the Caribbean Sea. Herein we offer management recommendations to optimize wildlife habitat without elevating phosphorus concentrations.


2017 ◽  
Vol 75 (1) ◽  
pp. 30-42 ◽  
Author(s):  
Louis Legendre ◽  
Richard B Rivkin ◽  
Nianzhi Jiao

Abstract This “Food for Thought” article examines the potential uses of several novel scientific and technological developments, which are currently available or being developed, to significantly advance or supplement existing experimental approaches to study water-column biogeochemical processes (WCB-processes). After examining the complementary roles of observation, experiments and numerical models to study WCB-processes, we focus on the main experimental approaches of free-water in situ experiments, and at-sea and on-land meso- and macrocosms. We identify some of the incompletely resolved aspects of marine WCB-processes, and explore advanced experimental approaches that could be used to reduce their uncertainties. We examine three such approaches: free-water experiments of lengthened duration using bioArgo floats and gliders, at-sea mesocosms deployed several 100s m below the sea-surface using new biogeochemical sensors, and 50 m-tall on-land macrocosms. These approaches could lead to significant progress in concepts related to marine WCB-processes.


2005 ◽  
Vol 18 (23) ◽  
pp. 5179-5182 ◽  
Author(s):  
Patrick J. Michaels ◽  
Paul C. Knappenberger ◽  
Christopher Landsea

Abstract In a simulation of enhanced tropical cyclones in a warmer world, Knutson and Tuleya make several assumptions that are not borne out in the real world. They include an unrealistically large carbon dioxide growth rate, an overly strong relationship between sea surface temperature and hurricane intensity, and the use of a mesoscale model that has shown little to no useful skill in predicting current-day hurricane intensity. After accounting for these inaccuracies, a detectable increase in Atlantic hurricane intensity in response to growing atmospheric greenhouse gas levels during this century becomes unlikely.


2017 ◽  
Vol 30 (22) ◽  
pp. 9195-9211 ◽  
Author(s):  
John T. Fasullo ◽  
Peter R. Gent

Abstract An accurate diagnosis of ocean heat content (OHC) is essential for interpreting climate variability and change, as evidenced for example by the broad range of hypotheses that exists for explaining the recent hiatus in global mean surface warming. Potential insights are explored here by examining relationships between OHC and sea surface height (SSH) in observations and two recently available large ensembles of climate model simulations from the mid-twentieth century to 2100. It is found that in decadal-length observations and a model control simulation with constant forcing, strong ties between OHC and SSH exist, with little temporal or spatial complexity. Agreement is particularly strong on monthly to interannual time scales. In contrast, in forced transient warming simulations, important dependencies in the relationship exist as a function of region and time scale. Near Antarctica, low-frequency SSH variability is driven mainly by changes in the circumpolar current associated with intensified surface winds, leading to correlations between OHC and SSH that are weak and sometimes negative. In subtropical regions, and near other coastal boundaries, negative correlations are also evident on long time scales and are associated with the accumulated effects of changes in the water cycle and ocean dynamics that underlie complexity in the OHC relationship to SSH. Low-frequency variability in observations is found to exhibit similar negative correlations. Combined with altimeter data, these results provide evidence that SSH increases in the Indian and western Pacific Oceans during the hiatus are suggestive of substantial OHC increases. Methods for developing the applicability of altimetry as a constraint on OHC more generally are also discussed.


Sign in / Sign up

Export Citation Format

Share Document