Dynamic analysis of a three-degrees-of-freedom in-parallel actuated manipulator

1988 ◽  
Vol 4 (3) ◽  
pp. 361-367 ◽  
Author(s):  
K.-M. Lee ◽  
D.K. Shah
1969 ◽  
Vol 59 (4) ◽  
pp. 1591-1598
Author(s):  
G. A. McLennan

Abstract An exact method is developed to eliminate the accelerometer error in dynamic response calculations for damped multi-degree of freedom systems. It is shown that the exact responses of a system can be obtained from the approximate responses which are conventionally calculated from an accelerogram. Response calculations were performed for two typical systems with three degrees of freedom for an assumed pseudo-earthquake. The results showed that the approximate responses may contain large errors, and that the correction developed effectively eliminates these errors.


2018 ◽  
Vol 35 (3) ◽  
pp. 305-313 ◽  
Author(s):  
C. Rebiai

ABSTRACTIn this investigation, a new simple triangular strain based membrane element with drilling rotation for 2-D structures analysis is proposed. This new numerical model can be used for linear and dynamic analysis. The triangular element is named SBTE and it has three nodes with three degrees of freedom at each node. The displacements field of this element is based on the assumed functions for the various strains satisfying the compatibility equations. This developed element passed both patch and benchmark tests in the case of bending and shear problems. For the dynamic analysis, lumped mass with implicit/explicit time integration are employed. The obtained numerical results using the developed element converge toward the analytical and numerical solutions in both analyses.


1977 ◽  
Vol 99 (4) ◽  
pp. 859-866 ◽  
Author(s):  
P. V. Kasbekar ◽  
V. K. Garg ◽  
G. C. Martin

A dynamic analysis is presented to explain damage to railroad cars and ladings resulting from impacts. In the analysis, a mathematical model consisting of the car body and freight in the car is presented. Each freight element assumes three degrees of freedom for the computer simulation. A parametric study is made to establish sensitivity of car parameters and impact conditions. The study should be useful to aid in finding means for controlling impact damage and in designing packaging materials.


2018 ◽  
Vol 51 (13) ◽  
pp. 372-377 ◽  
Author(s):  
Juan E. Andrade García ◽  
Alejandra Ferreira de Loza ◽  
Luis T. Aguilar ◽  
Ramón I. Verdés

Author(s):  
A. H. S. Iyer ◽  
M. H. Colliander

Abstract Background The trend in miniaturisation of structural components and continuous development of more advanced crystal plasticity models point towards the need for understanding cyclic properties of engineering materials at the microscale. Though the technology of focused ion beam milling enables the preparation of micron-sized samples for mechanical testing using nanoindenters, much of the focus has been on monotonic testing since the limited 1D motion of nanoindenters imposes restrictions on both sample preparation and cyclic testing. Objective/Methods In this work, we present an approach for cyclic microcantilever bending using a micromanipulator setup having three degrees of freedom, thereby offering more flexibility. Results The method has been demonstrated and validated by cyclic bending of Alloy 718plus microcantilevers prepared on a bulk specimen. The experiments reveal that this method is reliable and produces results that are comparable to a nanoindenter setup. Conclusions Due to the flexibility of the method, it offers straightforward testing of cantilevers manufactured at arbitrary position on bulk samples with fully reversed plastic deformation. Specific microstructural features, e.g., selected orientations, grain boundaries, phase boundaries etc., can therefore be easily targeted.


Sign in / Sign up

Export Citation Format

Share Document