Design and fabrication of low-loss polymer waveguide components for on-chip optical interconnection

1996 ◽  
Vol 8 (12) ◽  
pp. 1647-1649 ◽  
Author(s):  
L. Robitaille ◽  
C.L. Callender ◽  
J.P. Noad
1995 ◽  
Vol 413 ◽  
Author(s):  
L. Robitaille ◽  
C. L. Callender ◽  
J. P. Noad

ABSTRACTThis paper reports the fabrication and characterization of polyimide branching waveguides for on-chip optical signal distribution in GaAs-based optoelectronic integrated circuits (OEICs). Low-loss polyimide s-bends and splitters with good splitting ratios and angles considerably larger than similar structures made from inorganic (e.g. LiNbO3) and semiconductor (e.g. GaAs, InP) materials, have been successfully fabricated and tested. The effects of the radius of curvature, splitter angle and cladding materials on the optical losses are discussed.


2012 ◽  
Vol E95.C (7) ◽  
pp. 1244-1251 ◽  
Author(s):  
Koji TAKEDA ◽  
Tomonari SATO ◽  
Takaaki KAKITSUKA ◽  
Akihiko SHINYA ◽  
Kengo NOZAKI ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1302
Author(s):  
Zhiyong Wu ◽  
Lei Zhang ◽  
Tingyin Ning ◽  
Hong Su ◽  
Irene Ling Li ◽  
...  

Surface plasmon polaritons (SPPs) have been attracting considerable attention owing to their unique capabilities of manipulating light. However, the intractable dispersion and high loss are two major obstacles for attaining high-performance plasmonic devices. Here, a graphene nanoribbon gap waveguide (GNRGW) is proposed for guiding dispersionless gap SPPs (GSPPs) with deep-subwavelength confinement and low loss. An analytical model is developed to analyze the GSPPs, in which a reflection phase shift is employed to successfully deal with the influence caused by the boundaries of the graphene nanoribbon (GNR). It is demonstrated that a pulse with a 4 μm bandwidth and a 10 nm mode width can propagate in the linear passive system without waveform distortion, which is very robust against the shape change of the GNR. The decrease in the pulse amplitude is only 10% for a propagation distance of 1 μm. Furthermore, an array consisting of several GNRGWs is employed as a multichannel optical switch. When the separation is larger than 40 nm, each channel can be controlled independently by tuning the chemical potential of the corresponding GNR. The proposed GNRGW may raise great interest in studying dispersionless and low-loss nanophotonic devices, with potential applications in the distortionless transmission of nanoscale signals, electro-optic nanocircuits, and high-density on-chip communications.


2013 ◽  
Vol 21 (11) ◽  
pp. 13522 ◽  
Author(s):  
Justin B. Spring ◽  
Patrick S. Salter ◽  
Benjamin J. Metcalf ◽  
Peter C. Humphreys ◽  
Merritt Moore ◽  
...  
Keyword(s):  
Low Loss ◽  

Sign in / Sign up

Export Citation Format

Share Document