scholarly journals Intermittent heat instabilities in an air plume

2016 ◽  
Vol 23 (4) ◽  
pp. 319-330
Author(s):  
Jean-Louis Le Mouël ◽  
Vladimir G. Kossobokov ◽  
Frederic Perrier ◽  
Pierre Morat

Abstract. We report the results of heating experiments carried out in an abandoned limestone quarry close to Paris, in an isolated room of a volume of about 400 m3. A heat source made of a metallic resistor of power 100 W was installed on the floor of the room, at distance from the walls. High-quality temperature sensors, with a response time of 20 s, were fixed on a 2 m long bar. In a series of 24 h heating experiments the bar had been set up horizontally at different heights or vertically along the axis of the plume to record changes in temperature distribution with a sampling time varying from 20 to 120 s. When taken in averages over 24 h, the temperatures present the classical shape of steady-state plumes, as described by classical models. On the contrary, the temperature time series show a rich dynamic plume flow with intermittent trains of oscillations, spatially coherent, of large amplitude and a period around 400 s, separated by intervals of relative quiescence whose duration can reach several hours. To our knowledge, no specific theory is available to explain this behavior, which appears to be a chaotic interaction between a turbulent plume and a stratified environment. The observed behavior, with first-order factorization of a smooth spatial function with a global temporal intermittent function, could be a universal feature of some turbulent plumes in geophysical environments.

2016 ◽  
Author(s):  
Jean-Louis Le Mouël ◽  
Vladimir G. Kossobokov ◽  
Frederic Perrier ◽  
Pierre Morat

Abstract. We report the results of heating experiments carried in an abandoned limestone quarry close to Paris, in an isolated room of a volume of about 400 m3. A heat source made of a metallic resistor of power 100 W was installed on the floor of the room, at distance from the walls. High quality temperature sensors, with a response time of 20 s, were fixed on a 2-m long bar. In a series of 24-hour heating experiments the bar had been set up horizontally at different heights or vertically along the axis of the plume to record changes in temperature distribution with a sampling time varying from 20 s to 2 min. When taken in averages over 24 hours, the temperatures present the classical shape of steady state plumes, as described by classical models. On the contrary, the temperature time series show a rich dynamic plume flow with intermittent trains of oscillations, spatially coherent, of large amplitudes and a period around 400 s, separated by intervals of relative quiescence whose duration can reach several hours. To our knowledge, no specific theory is available to explain this behavior, which appears to be chaotic interaction between a turbulent plume and a stratified environment. The observed behavior, with first order factorization of a smooth spatial function with a global temporal intermittent function, could be a universal feature of some turbulent plumes in geophysical environments.


2011 ◽  
Vol 268-270 ◽  
pp. 557-560
Author(s):  
Shi Ruo Yang

The train and the continuous truss girder bridge are coupled together as one composite system. Truss girder bridge is idealized as an assemblage of finite truss element. The equations of the train and truss girder bridges time varying system are set up by using the principle of total potential energy with stationary value in elastic system dynamics and the“set-in-right-position”rule for forming structural matrices. This method is more convenient than the finite elements. The vibration responses of the train and bridge are calculated when the the passenger trains pass through a continuous truss girder bridge at speeds of 90km/h and 120km/h The results show that the passenger train can pass it safely and comfortably


1973 ◽  
Vol 40 (2) ◽  
pp. 464-470
Author(s):  
M. Holt ◽  
T. M. Lee

An improved calculation of the supersonic panel flutter characteristics of a thin cylindrical shell of finite length is presented. The aerodynamic load is determined with account taken of first-order terms in vibration frequency, and when this is introduced into the elastic shell equation an integro differential equation results. An equivalent eigenvalue problem is set up by applying Galerkin’s method to this equation. The flutter boundary, for given Mach number and circumferential mode n, corresponds to the shell thickness ratio at which the real part of any one of the eigenvalues first becomes non-negative. It is found that the most severe flutter condition, for given Mach number, occurs for a circumferential mode n = 7. The present calculations exclude second-order frequency terms in the elastic part of the flutter equation, even though they may have a first-order effect. A subsequent calculation referred to here shows that these terms indeed have no significant influence on the first-order analysis.


2017 ◽  
Vol 147 (5) ◽  
pp. 1041-1089 ◽  
Author(s):  
Georgy Kitavtsev ◽  
Stephan Luckhaus ◽  
Angkana Rüland

In this paper we are interested in the microscopic modelling of a two-dimensional two-well problem that arises from the square-to-rectangular transformation in (two-dimensional) shape-memory materials. In this discrete set-up, we focus on the surface energy scaling regime and further analyse the Hamiltonian that was introduced by Kitavtsev et al. in 2015. It turns out that this class of Hamiltonians allows for a direct control of the discrete second-order gradients and for a one-sided comparison with a two-dimensional spin system. Using this and relying on the ideas of Conti and Schweizer, which were developed for a continuous analogue of the model under consideration, we derive a (first-order) continuum limit. This shows the emergence of surface energy in the form of a sharp-interface limiting model as well the explicit structure of the minimizers to the latter.


Author(s):  
Yurong Cai ◽  
Teru Hayashi

Abstract The nonlinear equation for the rotational vibration of a pair of spur gears has a restriction that the analytical solution of the equation cannot be obtained. In this paper, the linear equation of vibration is derived theoretically and its physical model, i.e. the linear model of vibration is presented. The analytical solution of the linear equation, which is derived by analytical method, agrees well with the numerically calculated result by the nonlinear equation. By analyzing the analytical solution of the linear equation in detail, we clarified the relation between the waveforms of the vibration and the profile error of gear pairs, and also found that the effect of the contact ratio to the vibration is large and complex. The equivalent error, accounting for effects of the static load, the time-varying stiffness and the profile error of gear pairs, is proposed in this paper. It can be considered as promising for evaluating the profile error, because the vibration of gear pairs is excited mainly by the equivalent error. Finally, for confirming the above results, the vibration of two tested gear pairs has been measured by an experimental set-up for this purpose.


Author(s):  
Xiong Zhao ◽  
Lianyu Zheng ◽  
Yuehong Zhang

Abstract Mirror error compensation is usually employed to improve the machining precision of thin-walled parts. However, this zero-order method may result in inadequate error compensation, due to the time-varying cutting condition of thin-walled parts. To cope with this problem, an on-line first-order error compensation method is proposed for thin-walled parts. With this context, firstly, the time-varying cutting condition of thin-walled parts is defined with its in-process geometric and physical characteristics. Based on it, a first-order machining error compensation model is constructed. Then, during the process planning, the theory geometric and physical characteristic of thin-walled parts are respectively obtained with CAM software and structure dynamic modification method. After process performing, the real geometric characteristic of thin-walled parts is measured, and it is used to calculate the dimension error of thin-walled parts. Next, the error compensated value is evaluated based on the compensation model, from which, an error compensation plane is constructed to modify the tool center points for next process step. Finally, the machining error is compensated by performing the next process step. A milling test of thin-walled part is employed to verify the proposed method, and the experiment results shown that the proposed method can significantly improve the error compensation effect for low-stiffness structure, and thickness precision of thin-walled parts is improved by 71.4 % compared with the mirror error compensation method after machining.


Sign in / Sign up

Export Citation Format

Share Document