scholarly journals Semi-Persistent RRC Protocol for Machine-Type Communication Devices in LTE Networks

IEEE Access ◽  
2015 ◽  
Vol 3 ◽  
pp. 864-874 ◽  
Author(s):  
Yinan Qi ◽  
Atta Ul Quddus ◽  
Muhammad Ali Imran ◽  
Rahim Tafazolli
Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6553
Author(s):  
Edgar A. Esquivel-Mendiola ◽  
Hiram Galeana-Zapién ◽  
David H. Covarrubias ◽  
Edwin Aldana-Bobadilla

A progressive paradigm shift from centralized to distributed network architectures has been consolidated since the 4G communication standard, calling for novel decision-making mechanisms with distributed control to operate at the network edge. This situation implies that each base station (BS) must manage resources independently to meet the quality of service (QoS) of existing human-type communication devices (HTC), as well as the emerging machine type communication (MTC) devices from the internet of things (IoT). In this paper, we address the BS assignment problem, whose aim is to determine the most appropriate serving BS to each mobile device. This problem is formulated as an optimization problem for maximizing the system throughput and imposing constraints on the air interface and backhaul resources. The assignment problem is challenging to solve, so we present a simple yet valid reformulation of the original problem while using dual decomposition theory. Subsequently, we propose a distributed price-based BS assignment algorithm that performs at each BS the assignment process, where a novel pricing update scheme is presented. The simulation results show that our proposed solution outperforms traditional maximum signal to interference plus noise ratio (Max-SINR) and minimum path-loss (Min-PL) approaches in terms of system throughput.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3031
Author(s):  
Dong ◽  
Li ◽  
Yan

The Internet of Things (IoT) will feature pervasive sensing and control capabilities via the massive deployment of machine-type communication devices in order to greatly improve daily life. However, machine-type communications can be illegally used (e.g., by criminals or terrorists) which is difficult to monitor, and thus presents new security challenges. The information exchanged in machine-type communications is usually transmitted in short packets. Thus, this paper investigates a legitimate surveillance system via proactive eavesdropping at finite blocklength regime. Under the finite blocklength regime, we analyze the channel coding rate of the eavesdropping link and the suspicious link. We find that the legitimate monitor can still eavesdrop the information sent by the suspicious transmitter as the blocklength decreases, even when the eavesdropping is failed under the Shannon capacity regime. Moreover, we define a metric called the effective eavesdropping rate and study the monotonicity. From the analysis of monotonicity, the existence of a maximum effective eavesdropping rate for a moderate or even high signal-to-noise (SNR) is verified. Finally, numerical results are provided and discussed. In the simulation, we also find that the maximum effective eavesdropping rate slowly increases with the blocklength.


2018 ◽  
Vol 14 (5) ◽  
pp. 155014771877821 ◽  
Author(s):  
Shujun Han ◽  
Xiaodong Xu ◽  
Litong Zhao ◽  
Xiaofeng Tao

Non-orthogonal multiple access is an essential promising solution to support large-scale connectivity required by massive machine-type communication scenario defined in the fifth generation (5G) mobile communication system. In this article, we study the problem of energy minimization in non-orthogonal multiple access–based massive machine-type communication network. Focusing on the massive machine-type communication scenario and assisted by grouping method, we propose an uplink cooperative non-orthogonal multiple access scheme with two phases, transmission phase and cooperation phase, for one uplink cooperative transmission period. Based on uplink cooperative non-orthogonal multiple access, the machine-type communication device with better channel condition and more residual energy will be selected as a group head, which acts as a relay assisting other machine-type communication devices to communicate. In the transmission phase, machine-type communication devices transmit data to the group head. Then, the group head transmits the received data with its own data to base station in the cooperation phase. Because the massive machine-type communication devices are low-cost dominant with limited battery, based on uplink cooperative non-orthogonal multiple access, we propose a joint time and power allocation algorithm to minimize the system energy consumption. Furthermore, the proposed joint time and power allocation algorithm includes dynamic group head selection and fractional transmit time allocation algorithms. Simulation results show that the proposed solution for uplink cooperative non-orthogonal multiple access–based massive machine-type communication network outperforms other schemes.


Author(s):  
S Ullah ◽  
Raja Zahilah ◽  
Marina Md Arshad ◽  
Abdul Hanan Abdullah ◽  
Rashidah Kadir

Author(s):  
Mariya Ouaissa ◽  
A. Rhattoy

Machine Type Communication (MTC) is considered as one of the most important approaches to the future of mobile communication has attracted more and more attention. To reach the safety of MTC, applications in networks must meet the low power consumption requirements of devices and mass transmission device. When a large number of MTC devices get connected to the network, each MTC device must implement an independent access authentication process according to the 3GPP standard, which will cause serious traffic congestion in the Long Term Evolution (LTE) network. In this article, we propose a new group access authentication scheme, by which a huge number of MTC devices can be simultaneously authenticated by the network and establish an independent session key with the network respectively. Experimental results show that the proposed scheme can achieve robust security and avoid signaling overload on LTE networks


Sign in / Sign up

Export Citation Format

Share Document