scholarly journals A Novel Nonlinear Partial Least Square Integrated With Error-Based Extreme Learning Machine

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 59903-59912 ◽  
Author(s):  
Ze Dong ◽  
Ning Ma
2014 ◽  
Vol 548-549 ◽  
pp. 1735-1738 ◽  
Author(s):  
Jian Tang ◽  
Dong Yan ◽  
Li Jie Zhao

Modeling concrete compressive strength is useful to ensure quality of civil engineering. This paper aims to compare several Extreme learning machines (ELMs) based modeling approaches for predicting the concrete compressive strength. Normal ELM algorithm, Partial least square-based extreme learning machines (PLS-ELMs) algorithm and Kernel ELM (KELM) algorithm are used and evaluated. Results indicate that the normal ELMs algorithm has the highest modeling speed, and the KELM has the best prediction accuracy. Every method is validated for modeling concrete compressive strength. The appropriate modeling approach should be selected according different purposes.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5535 ◽  
Author(s):  
Tinghui Ouyang ◽  
Chongwu Wang ◽  
Zhangjun Yu ◽  
Robert Stach ◽  
Boris Mizaikoff ◽  
...  

Advanced chemometric analysis is required for rapid and reliable determination of physical and/or chemical components in complex gas mixtures. Based on infrared (IR) spectroscopic/sensing techniques, we propose an advanced regression model based on the extreme learning machine (ELM) algorithm for quantitative chemometric analysis. The proposed model makes two contributions to the field of advanced chemometrics. First, an ELM-based autoencoder (AE) was developed for reducing the dimensionality of spectral signals and learning important features for regression. Second, the fast regression ability of ELM architecture was directly used for constructing the regression model. In this contribution, nitrogen oxide mixtures (i.e., N2O/NO2/NO) found in vehicle exhaust were selected as a relevant example of a real-world gas mixture. Both simulated data and experimental data acquired using Fourier transform infrared spectroscopy (FTIR) were analyzed by the proposed chemometrics model. By comparing the numerical results with those obtained using conventional principle components regression (PCR) and partial least square regression (PLSR) models, the proposed model was verified to offer superior robustness and performance in quantitative IR spectral analysis.


2016 ◽  
Vol 28 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Xudong Sun ◽  
Mingxing Zhou ◽  
Yize Sun

Purpose – The purpose of this paper is to develop near infrared (NIR) techniques coupled with multivariate calibration methods to rapid measure cotton content in blend fabrics. Design/methodology/approach – In total, 124 and 41 samples were used to calibrate models and assess the performance of the models, respectively. Multivariate calibration methods of partial least square (PLS), extreme learning machine (ELM) and least square support vector machine (LS-SVM) were employed to develop the models. Through comparing the performance of PLS, ELM and LS-SVM models with new samples, the optimal model of cotton content was obtained with LS-SVM model. The correlation coefficient of prediction (r p ) and root mean square errors of prediction were 0.98 and 4.50 percent, respectively. Findings – The results suggest that NIR technique combining with LS-SVM method has significant potential to quantitatively analyze cotton content in blend fabrics. Originality/value – It may have commercial and regulatory potential to avoid time consuming work, costly and laborious chemical analysis for cotton content in blend fabrics.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Dazi Li ◽  
Qianwen Xie ◽  
Qibing Jin

A new strategy for internal model control (IMC) is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM). Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS), while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.


2016 ◽  
Vol 25 (01) ◽  
pp. 1550026 ◽  
Author(s):  
Juan J. Carrasco ◽  
Mónica Millán-Giraldo ◽  
Juan Caravaca ◽  
Pablo Escandell-Montero ◽  
José M. Martínez-Martínez ◽  
...  

Extreme Learning Machine (ELM) is a recently proposed algorithm, efficient and fast for learning the parameters of single layer neural structures. One of the main problems of this algorithm is to choose the optimal architecture for a given problem solution. To solve this limitation several solutions have been proposed in the literature, including the regularization of the structure. However, to the best of our knowledge, there are no works where such adjustment is applied to classification problems in the presence of a non-linearity in the output; all published works tackle modelling or regression problems. Our proposal has been applied to a series of standard databases for the evaluation of machine learning techniques. Results obtained in terms of classification success rate and training time, are compared to the original ELM, to the well known Least Square Support Vector Machine (LS-SVM) algorithm and with two other methods based on the ELM regularization: Optimally Pruned Extreme Learning Machine (OP-ELM) and Bayesian Extreme Learning Machine (BELM). The obtained results clearly demonstrate the usefulness of the proposed method and its superiority over a classical approach.


Sign in / Sign up

Export Citation Format

Share Document