ELM Regularized Method for Classification Problems

2016 ◽  
Vol 25 (01) ◽  
pp. 1550026 ◽  
Author(s):  
Juan J. Carrasco ◽  
Mónica Millán-Giraldo ◽  
Juan Caravaca ◽  
Pablo Escandell-Montero ◽  
José M. Martínez-Martínez ◽  
...  

Extreme Learning Machine (ELM) is a recently proposed algorithm, efficient and fast for learning the parameters of single layer neural structures. One of the main problems of this algorithm is to choose the optimal architecture for a given problem solution. To solve this limitation several solutions have been proposed in the literature, including the regularization of the structure. However, to the best of our knowledge, there are no works where such adjustment is applied to classification problems in the presence of a non-linearity in the output; all published works tackle modelling or regression problems. Our proposal has been applied to a series of standard databases for the evaluation of machine learning techniques. Results obtained in terms of classification success rate and training time, are compared to the original ELM, to the well known Least Square Support Vector Machine (LS-SVM) algorithm and with two other methods based on the ELM regularization: Optimally Pruned Extreme Learning Machine (OP-ELM) and Bayesian Extreme Learning Machine (BELM). The obtained results clearly demonstrate the usefulness of the proposed method and its superiority over a classical approach.

Author(s):  
Sanjiban Sekhar Roy ◽  
V. Madhu Viswanatham

Spam emails have become an increasing difficulty for the entire web-users.These unsolicited messages waste the resources of network unnecessarily. Customarily, machine learning techniques are adopted for filtering email spam. This article examines the capabilities of the extreme learning machine (ELM) and support vector machine (SVM) for the classification of spam emails with the class level (d). The ELM method is an efficient model based on single layer feed-forward neural network, which can choose weights from hidden layers,randomly. Support vector machine is a strong statistical learning theory used frequently for classification. The performance of ELM has been compared with SVM. The comparative study examines accuracy, precision, recall, false positive, true positive.Moreover, a sensitivity analysis has been performed by ELM and SVM for spam email classification.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1284
Author(s):  
Licheng Cui ◽  
Huawei Zhai ◽  
Hongfei Lin

An extreme learning machine (ELM) is an innovative algorithm for the single hidden layer feed-forward neural networks and, essentially, only exists to find the optimal output weight so as to minimize output error based on the least squares regression from the hidden layer to the output layer. With a focus on the output weight, we introduce the orthogonal constraint into the output weight matrix, and propose a novel orthogonal extreme learning machine (NOELM) based on the idea of optimization column by column whose main characteristic is that the optimization of complex output weight matrix is decomposed into optimizing the single column vector of the matrix. The complex orthogonal procrustes problem is transformed into simple least squares regression with an orthogonal constraint, which can preserve more information from ELM feature space to output subspace, these make NOELM more regression analysis and discrimination ability. Experiments show that NOELM has better performance in training time, testing time and accuracy than ELM and OELM.


Author(s):  
Thế Cường Nguyễn ◽  
Thanh Vi Nguyen

In binary classification problems, two classes of data seem to be different from each other. It is expected to bemore complicated due to the number of data points of clusters in each class also be different. Traditional algorithmsas Support Vector Machine (SVM), Twin Support Vector Machine (TSVM), or Least Square Twin Support VectorMachine (LSTSVM) cannot sufficiently exploit information about the number of data points in each cluster of the data.Which may be effect to the accuracy of classification problems. In this paper, we propose a new Improvement LeastSquare - Support Vector Machine (called ILS-SVM) for binary classification problems with a class-vs-clusters strategy.Experimental results show that the ILS-SVM training time is faster than that of TSVM, and the ILS-SVM accuracy isbetter than LSTSVM and TSVM in most cases.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 775 ◽  
Author(s):  
Yuliang Ma ◽  
Songjie Zhang ◽  
Donglian Qi ◽  
Zhizeng Luo ◽  
Rihui Li ◽  
...  

Driving fatigue accounts for a large number of traffic accidents in modern life nowadays. It is therefore of great importance to reduce this risky factor by detecting the driver’s drowsiness condition. This study aimed to detect drivers’ drowsiness using an advanced electroencephalography (EEG)-based classification technique. We first collected EEG data from six healthy adults under two different awareness conditions (wakefulness and drowsiness) in a virtual driving experiment. Five different machine learning techniques, including the K-nearest neighbor (KNN), support vector machine (SVM), extreme learning machine (ELM), hierarchical extreme learning machine (H-ELM), and the proposed modified hierarchical extreme learning machine algorithm with particle swarm optimization (PSO-H-ELM), were applied to classify the subject’s drowsiness based on the power spectral density (PSD) feature extracted from the EEG data. The mean accuracies of the five classifiers were 79.31%, 79.31%, 74.08%, 81.67%, and 83.12%, respectively, demonstrating the superior performance of our new PSO-H-ELM algorithm in detecting drivers’ drowsiness, compared to the other techniques.


Author(s):  
Babita Majhi ◽  
Sachin Singh Rajput ◽  
Ritanjali Majhi

The principle objective of this chapter is to build up a churn prediction model which helps telecom administrators to foresee clients who are no doubt liable to agitate. Many studies affirmed that AI innovation is profoundly effective to anticipate this circumstance as it is applied through training from past information. The prediction procedure is involved three primary stages: normalization of the data, then feature selection based on information gain, and finally, classification utilizing different AI methods, for example, back propagation neural network (BPNNM), naïve Bayesian, k-nearest neighborhood (KNN), support vector machine (SVM), discriminant analysis (DA), decision tree (DT), and extreme learning machine (ELM). It is shown from simulation study that out of these seven methods SVM with polynomial based kernel is coming about 91.33% of precision where ELM is at the primary situation with 92.10% of exactness and MLANN-based CCP model is at third rank with 90.4% of accuracy. Similar observation is noted for 10-fold cross validation also.


2020 ◽  
Vol 10 (5) ◽  
pp. 1827 ◽  
Author(s):  
Rodrigo Olivares ◽  
Roberto Munoz ◽  
Ricardo Soto ◽  
Broderick Crawford ◽  
Diego Cárdenas ◽  
...  

During the last years, highly-recognized computational intelligence techniques have been proposed to treat classification problems. These automatic learning approaches lead to the most recent researches because they exhibit outstanding results. Nevertheless, to achieve this performance, artificial learning methods firstly require fine tuning of their parameters and then they need to work with the best-generated model. This process usually needs an expert user for supervising the algorithm’s performance. In this paper, we propose an optimized Extreme Learning Machine by using the Bat Algorithm, which boosts the training phase of the machine learning method to increase the accuracy, and decreasing or keeping the loss in the learning phase. To evaluate our proposal, we use the Parkinson’s Disease audio dataset taken from UCI Machine Learning Repository. Parkinson’s disease is a neurodegenerative disorder that affects over 10 million people. Although its diagnosis is through motor symptoms, it is possible to evidence the disorder through variations in the speech using machine learning techniques. Results suggest that using the bio-inspired optimization algorithm for adjusting the parameters of the Extreme Learning Machine is a real alternative for improving its performance. During the validation phase, the classification process for Parkinson’s Disease achieves a maximum accuracy of 96.74% and a minimum loss of 3.27%.


2021 ◽  
Vol 7 ◽  
pp. e411
Author(s):  
Osman Altay ◽  
Mustafa Ulas ◽  
Kursat Esat Alyamac

Extreme learning machine (ELM) algorithm is widely used in regression and classification problems due to its advantages such as speed and high-performance rate. Different artificial intelligence-based optimization methods and chaotic systems have been proposed for the development of the ELM. However, a generalized solution method and success rate at the desired level could not be obtained. In this study, a new method is proposed as a result of developing the ELM algorithm used in regression problems with discrete-time chaotic systems. ELM algorithm has been improved by testing five different chaotic maps (Chebyshev, iterative, logistic, piecewise, tent) from chaotic systems. The proposed discrete-time chaotic systems based ELM (DCS-ELM) algorithm has been tested in steel fiber reinforced self-compacting concrete data sets and public four different datasets, and a result of its performance compared with the basic ELM algorithm, linear regression, support vector regression, kernel ELM algorithm and weighted ELM algorithm. It has been observed that it gives a better performance than other algorithms.


Author(s):  
Thanh Vi Nguyen ◽  
Thế Cường Nguyễn

n binary classification problems, two classes of data seem tobe different from each other. It is expected to be more complicated dueto the number of data points of clusters in each class also be different.Traditional algorithms as Support Vector Machine (SVM), Twin Support Vector Machine (TSVM), or Least Square Twin Support VectorMachine (LSTSVM) cannot sufficiently exploit information about thenumber of data points in each cluster of the data. Which may be effectto the accuracy of classification problems. In this paper, we proposes anew Improved Least Square - Support Vector Machine (called ILS-SVM)for binary classification problems with a class-vs-clusters strategy. Experimental results show that the ILS-SVM training time is faster thanthat of TSVM, and the ILS-SVM accuracy is better than LSTSVM andTSVM in most cases.


2018 ◽  
Vol 777 ◽  
pp. 372-376 ◽  
Author(s):  
Shan Feng Fang

Diverse machine learning approaches were employed to build regression models for predicting mechanical property of Cu-Ti-Co alloy. The forecasting performance of the least-square support vector machines (LSSVM) model has been compared with other artificial intelligence methods such as GRNN, RBF-PLS and RBFNN. The models were developed and validated utilizing a cross-validation (CV) procedure to improve the forecasting accuracy and generalization ability. The result demonstrates that the generalization performance of the new LSSVM is slightly better or superior to those acquired using GRNN, RBF-PLS and RBFNN. In future, it would be expected that the relatively new model based on machine learning is used as an especially helpful implement to accelerate materials design of copper alloys.


Sign in / Sign up

Export Citation Format

Share Document