scholarly journals QuGAN: Quasi Generative Adversarial Network for Tibetan Question Answering Corpus Generation

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 116247-116255
Author(s):  
Yuan Sun ◽  
Chaofan Chen ◽  
Tianci Xia ◽  
Xiaobing Zhao
Author(s):  
Kaichun Yao ◽  
Libo Zhang ◽  
Tiejian Luo ◽  
Lili Tao ◽  
Yanjun Wu

We propose a novel neural network model that aims to generate diverse and human-like natural language questions. Our model not only directly captures the variability in possible questions by using a latent variable, but also generates certain types of questions by introducing an additional observed variable. We deploy our model in the generative adversarial network (GAN) framework and modify the discriminator which not only allows evaluating the question authenticity, but predicts the question type. Our model is trained and evaluated on a question-answering dataset SQuAD, and the experimental results shown the proposed model is able to generate diverse and readable questions with the specific attribute.


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


Author(s):  
Annapoorani Gopal ◽  
Lathaselvi Gandhimaruthian ◽  
Javid Ali

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.


2019 ◽  
Vol 52 (21) ◽  
pp. 291-296 ◽  
Author(s):  
Minsung Sung ◽  
Jason Kim ◽  
Juhwan Kim ◽  
Son-Cheol Yu

Sign in / Sign up

Export Citation Format

Share Document